Skip to main content
Log in

Methods for the Analysis of Residual Stress Fields in Spatial Details

  • MECHANICS OF MATERIALS: STRENGTH, RESOURCE, AND SAFETY
  • Published:
Inorganic Materials Aims and scope

Abstract

A brief review of the methods for the study of residual process stresses (RSs) in the elements of structures and specimens is given. The possibilities and the fields of the application of nondestructive testing of RSs are indicated. Destructive experimental and calculation methods for the study of two-dimensional and three-dimensional nonuniform fields of RSs in spatial structures, which are based on the interpretation of experimental data as an inverse problem of elasticity theory, are particularly noted. It is recommended to use optical-digital methods for the recording of displacement fields in order to obtain significant collections of experimental information necessary in this case, which are caused by the formation of the cuts of various configurations in the object under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Makhutov, N.A. Prochnost’ i bezopasnost’: fundamental’nye i prikladnye issledovaniya (Durability and Safety: Fundamental and Applied Studies), Novosibirsk: Nauka, 2008.

    Google Scholar 

  2. Proc. Special Symp. within the 16th European Conf. on Fracture (ECF–16) “Residual Stress and Its Effects on Fatigue and Fracture,” Alexandroupolis, Greece, July 3–7, 2006, New York: Springer-Verlag, 2006.

  3. Burkin, S.P., Shimov, G.V., and Andryukova, E.A., Ostatochnye napryazheniya v metalloproduktsii (Residual Stresses in the Metal Production), Yekaterinburg: Ural. Gos. Univ., 2015.

    Google Scholar 

  4. Schajer, G.S., Practical Residual Stress Measurement Methods, New York: Wiley, 2013.

    Book  Google Scholar 

  5. Fitzpatrick, M.E., Fry, A.T., Holdway, P., Kandil, F.A., Shackleton, J., and Suominen, L., Determination of residual stresses by x-ray siffraction, in Measurement Good Practice Guide No. 52, Teddington: Natl. Phys. Lab., 2005, no. 2.

  6. Stewart, D.M., Stevens, K.J., and Kaiser, A.B., Magnetic Barkhausen noise analysis of stress in steel, Curr. Appl. Phys., 2004, vol. 4, nos. 2–4, pp. 308–311.

  7. Ilker Yelbay, H., Cam, I., and Hakan Gür, C., Non-destructive determination of residual stress state in steel weldments by Magnetic Barkhausen Noise technique, NDT&E Int., 2010, vol. 43, pp. 29–33.

    Article  CAS  Google Scholar 

  8. Estefen, S.F., Gurova, T., Castello, X., and Leontiev, A., Surface residual stress evaluation in double electrode butt welded steel plates, Mater. Des., 2010, vol. 31, no. 3, pp. 1622–1627.

    Article  CAS  Google Scholar 

  9. Nikitina, N.E., Akustouprugost’. Opyt prakticheskogo primeneniya (Acoustic Elasticity: Practical Experience), Nizhny Novgorod: Talam, 2005.

    Google Scholar 

  10. Marquette, Ya.M., Belahcene, F., and Lu, J., Residual stresses in laser welded aluminium plate by use of ultrasonic and optical methods, Mater. Sci. Eng., 2004, vol. 382, nos. 1–2, pp. 257–264.

  11. Bokuchava, G.D., Balagurov, A.M., Sumin, V.V., and Papushkin, I.V., Neutron Fourier diffractometer FSD for residual stress studies in materials and industrial components, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2010, vol. 4, no. 6, pp. 879–890.

    Article  Google Scholar 

  12. Sumin, V.V., Sheverev, S.G., Schneider, R., Wimpory, R., and Balagurov, A.M., Results of measuring the residual strains in the WWER-1000 reactor vessel, Phys. Solid State, 2010, vol. 52, no. 5, pp. 992–995.

    Article  CAS  Google Scholar 

  13. Kostylev, V.I. and Margolin, B.Z., Determination of residual stress and strain fields caused by cladding and tempering of reactor pressure vessels, Int. J. Pressure Vessels Piping, 2000, vol. 77, pp. 723–735.

    Article  CAS  Google Scholar 

  14. Murugan, N. and Narayan, R., Finite element simulation of residual stresses and their measurement by contour method, Mater. Des., 2009, vol. 30, no. 6, pp. 2067–2071.

    Article  CAS  Google Scholar 

  15. Mi, G., Li, C., Gao, Z., Zhao, D., and Niu, J., Finite element analysis of welding residual stress of aluminum plates under different butt joint parameters, Eng. Rev., 2014, vol. 3, pp. 161–166.

    Google Scholar 

  16. Pokrovskii, A.M., Calculation of residual stresses in the bimetal rolling rolls after heat treatment, Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Ser. Mashinostr., 2012, no. 6, pp. 186–196.

  17. Birger, I.A., Ostatochnye napryazheniya (Residual Stresses), Moscow: Mashgiz, 1963.

    Google Scholar 

  18. ASTM E-837-89: Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method, West Conshohocken, PA: ASTM Int., 1989.

  19. Odintsev, I.N., Shchepinov, V.P., and Shchikanov, A.Yu., Holographic interferometry for measuring residual stresses by using probing holes, Tech. Phys., 2003, vol. 48, no. 11, pp. 1464–1467.

    Article  CAS  Google Scholar 

  20. Shokriekh, M.M. and Ghasemi, A.R., Simulation of central hole drilling process for measurement of residual stresses in isotropic, orthotropic, and laminated composite plates, J. Compos. Mater., 2007, vol. 41, no. 4, pp. 435–452.

    Article  Google Scholar 

  21. Odintsev, I.I., Apal’kov, A.A., and Razumovskii, I.A., The measurement of residual stresses in massive construction elements by electron speckle interferometry, Zavod. Lab., Diagn. Mater., 2003, vol. 69, no. 2, pp. 45–49.

    Google Scholar 

  22. Schajer, G.S. and Steinzig, M., Full-field calculation of hole drilling residual stresses from electronic speckle pattern interferometry data, Exp. Mech., 2005, vol. 45, no. 6, pp. 526–532.

    Article  Google Scholar 

  23. Makhutov, N.A., Razumovskii, I.A., Kossov, V.S., Apal’kov, A.A., and Odintsev, I.N., Study of residual stresses using electron digital speckle interferometry in full-scale conditions, Zavod. Lab., Diagn. Mater., 2008, vol. 74, no. 5, pp. 47–52.

    Google Scholar 

  24. Sutton, M.A., Orteu, J.-J., and Schreier, H., Image Correlation for Shape, Motion and Deformation Measurements, Columbia: Univ. of South Carolina, 2009.

    Google Scholar 

  25. Razumovskii, I.A. and Khvostov, S.M., Research methodology of Residual stresses in the bimetal shell cases, Vopr. At. Nauki Tekh., Ser.: Obespechenie Bezop. AES, 2010, no. 14, pp. 155–162.

  26. Dveres, M.N. and Fomin, A.V., Determination of residual stresses, Mashinovedenie, 1985, no. 5, pp. 23–31.

  27. Razumovsky, I.A., Medvedev, M.V., and Fomin, A.V., Methods for investigations inhomogeneous residual stresses fields, in Handbook of Residual Stress and Deformation of Steel, Totten, G., Howes, M., and Unoue, T., Eds., Materials Park, Oh: ASM Int., 2002, pp. 125–138.

  28. Prime, M.B. and Hill, M.R., Uncertainty, model error, and order selection for series-expanded, residual-stress inverse solutions, ASME J. Eng. Mater. Technol., 2006, vol. 128, pp. 175–185.

    Article  Google Scholar 

  29. Vaidyanathan, S. and Finnie, I., Determination of residual stresses from stress intensity factor measurements, J. Basic Eng., 1971, vol. 93, pp. 242–246.

    Article  Google Scholar 

  30. Rasumovsky, I.A., Interference-optical Methods of Solid Mechanics, Foundations of Engineering Mechanics, New York: Springer-Verlag, 2011.

    Book  Google Scholar 

  31. Kuliev, V.D. and Razumovskii, I.A., Determination of residual stresses in bimetalls, Dokl. Akad. Nauk SSSR, 1990, vol. 315, no. 3, pp. 561–565.

    Google Scholar 

  32. Obespechenie resursa i zhivuchesti vodo-vodyanykh energeticheskikh reaktorov (Ensuring the Capacity and Lifespan of WWER), Makhutov, N.A. and Gadenin, M.M., Eds., Moscow: Nauka, 2009.

    Google Scholar 

  33. Prime, M.B., Residual stress measurement by successive extension of a slot: the crack compliance method, Appl. Mech. Rev., 1999, vol. 52, no. 2, pp. 75–96.

    Article  Google Scholar 

  34. Razumovskii, I.A. and Chernyatin, A.S., The method and program for determination of the parameters of the stress-strain state based on experimental data, Mashinostr. Inzh. Obraz., 2009, no. 4, pp. 35–42.

  35. Chernyatin, A.S. and Razumovskii, I.A., Methodology and software package for assessment of stress-strain state parameters of full-scale structures and its application to a study of loading level, defect rate, and residual stress level in elements of NPP equipment, Strength Mater., 2013, vol. 45, no. 4, pp. 506–511.

    Article  Google Scholar 

  36. Schajer, G.S., Advances in hole-drilling residual stress measurements, Proc. XI Int. Congr. and Exposition on Experimental Mechanics and Applied Mechanics, June 2–5, 2008, Bethel, CT: Soc. Exp. Mech., 2008.

  37. Razumovsky, I.A. and Chernyatin, A.S., Experimentally-settlement method for studying residual stresses in the two-layer construction elements by way of drilling, J. Mach. Manuf. Reliab., 2011, vol. 40, no. 4, pp. 101–109.

    Google Scholar 

  38. Chernyatin, A.S. and Razumovskii, I.A., A sequentially deepened disc cut as an indicator of residual stresses in spatial bodies, J. Mach. Manuf. Reliab., 2015, vol. 44, no. 5, pp. 471–478.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (project no. 14-19-00776).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Makhutov.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhutov, N.A., Razumovskii, I.A. Methods for the Analysis of Residual Stress Fields in Spatial Details. Inorg Mater 54, 1503–1510 (2018). https://doi.org/10.1134/S0020168518150098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518150098

Keywords:

Navigation