Skip to main content
Log in

Preparation of Dielectric Films via Thermal Oxidation of MnO2/GaAs

  • Published:
Inorganic Materials Aims and scope

Abstract

MnO2 nanolayers (~29 nm) produced on the surface of single-crystal GaAs wafers by magnetron sputtering have been shown to act as oxygen transfer agents for the thermal oxidation of the semiconductor. The presence of MnO2 increases the oxide film growth rate by three to nine times relative to stimulator-free oxidation of GaAs. The films thus grown range in thickness from 35 to 200 nm and possess good dielectric properties (resistivity on the order of ~1010 Ω cm and dielectric strength in the range (5–8) × 106 V/cm). According to X-ray diffraction data, the films are enriched in oxidized arsenic and have a regular grain structure in the surface layer, with a roughness height within 30 nm (according to atomic force microscopy data).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Fundamentals of III–V Semiconductor MOSFETs, Oktyabrsky, S. and Ye, P.D., Eds., New York: Springer, 2010.

    Google Scholar 

  2. Adamov, D.Yu., Adamov, Yu.F., and Amelin, D.V., Nanogeterostruktury v sverkhvysokochastotnoi poluprovodnikovoi elektronike (Nanoheterostructures in Microwave Semiconductor Electronics), Moscow: Tekhnosfera, 2010.

    Google Scholar 

  3. Moss, S.C., Poker, D.B., and Ila, D., Growth, Evolution and Properties of Surfaces, Thin Films, and Self Organized Structure, Cambridge: Cambridge Univ. Press, 2014.

    Google Scholar 

  4. Rudan, M., Physics of Semiconductor Devices, New York: Springer, 2014.

    Google Scholar 

  5. Vasil’ev, M.G., Vasil’ev, A.M., Izotov, A.D., and Shelyakin, A.A., High-temperature buried InP/GaInAsP heterostructure laser diode emitting at 1310 nm, Inorg. Mater., 2014, vol. 50, no. 9, pp. 888–891. doi 10.1134/S0020168514090167

    Article  CAS  Google Scholar 

  6. Vasil’ev, M.G., Vasil’ev, A.M., Golovanov, V.V., and Shelyakin, A.A., Fabrication and spectral characteristics of a laser diode for remote sensing of methane, Inorg. Mater., 2016, vol. 52, no. 9, pp. 872–875. doi 10.1134/S0020168516090168

    Article  CAS  Google Scholar 

  7. Vasil’ev, M.G., Vasil’ev, A.M., and Shelyakin, A.A., High-power InP/GaInAsP buried heterostructure semiconductor laser with a modulation band of up to 10 GHz, Inorg. Mater., 2010, vol. 46, no. 9, pp. 1013–1018. doi 10.1134/S0020168510090177

    Article  CAS  Google Scholar 

  8. Mittova, I.Ya., Influence of the physicochemical nature of chemical stimulators and the way they are introduced into a system on the mechanism of the thermal oxidation of GaAs and InP, Inorg. Mater., 2014, vol. 50, no. 9, pp. 874–881. doi 10.1134/S0020168514090088

    Article  CAS  Google Scholar 

  9. Thurmond, C.D., Schwartz, G.P., Kammlott, G.W., and Schwartz, B., GaAs oxidation and the Ga–As–O equilibrium phase diagram, J. Electrochem. Soc., 1980, vol. 127, no. 6, pp. 1366–1371. doi 10.1149/1.2129900

    Article  CAS  Google Scholar 

  10. Korbutowicz, R. and Prazmowska, J., Wet Thermal Oxidation of GaAs and GaN, INTECH Open Access, 2010.

    Book  Google Scholar 

  11. Mittova, I.Ya., Pshestanchik, V.R., Kostryukov, V.F., and Donkareva, I.A., Thermal oxidation of GaAs under the effect of binary compositions in the MnO2–PbO and MnO2–V2O5 systems, Mezhdunarodnaya Nauchnaya konferentsiya “Khimiya tverdogo tela i sovremennye mikro- i nanotekhnologii” (Int. Sci. Conf. Solid-State Chemistry and Modern Micro- and Nanotechnologies), Kislovodsk, 2002, pp. 50–51.

  12. Shchitovskaya, E.V., Formation and properties of highly selective manganese dioxide-based electrode systems, Cand. Sci. (Chem.) Dissertation, Vladivostok: Dal’nevostochnyi Gos. Univ., 2000.

  13. Lobanov, N.N., Izotov, A.D., and Pashkova, O.N., Microstructure and lattice strain of Mn-, Zn-, and Cd-doped InSb studied by X-ray diffraction, Inorg. Mater., 2015, vol. 51, no. 12, pp. 1185–1189. doi 10.1134/S0020168515120067

    Article  CAS  Google Scholar 

  14. Yarzhemsky, V.G., Murashov, S.V., and Izotov, A.D., Calculation of the exchange interaction in the Ga1 – x-MnxAs magnetic semiconductor by the Hartree–Fock and DFT methods, Dokl. Phys., 2015, vol. 60, no. 11, pp. 491–494. doi 10.1134/S1028335815110087

    Article  CAS  Google Scholar 

  15. Yarzhemsky, V.G., Murashov, S.V., and Izotov, A.D., Calculation of the electronic structure and exchange interaction in the InSb and GaAs semiconductors codoped with Mn and Ni, Inorg. Mater., 2017, vol. 53, no. 11, pp. 1131–1135. doi 10.1134/S0020168517110176

    Article  CAS  Google Scholar 

  16. Murashov, S.V., Electronic structure and exchange interaction in Mn/Ni codoped InSb and GaAs semiconductors, XVI Ezhegodnaya molodezhnaya konferentsiya molodykh sotrudnikov i aspirantov “Fizikokhimiya i tekhnologiya neorganicheskikh materialov” (s mezhd. uchastiem) (XVI Annual Physical Chemistry and Technology of Inorganic Materials Conf. of Young Fellows and Postgraduates (with international participation)) (Moscow, 2017), Moscow: Baikov Inst. Metall. Mater. Sci, Russ. Akad. Nauk, 2017, pp. 132–133.

  17. Spesivtsev, E.V., Rykhlitskii, S.V., and Shvets, V.A., Development of optical ellipsometry methods and instruments at the Inst. of Semiconductor Phys., Sib. Branch, Russ. Akad. Nauk, Avtometriya, 2011, vol. 47, no. 5, pp. 5–12.

    Google Scholar 

  18. Fujiwara, H., Spectroscopic Ellipsometry: Principles and Applications, Chichester: Wiley, 2007.

    Book  Google Scholar 

  19. Kostryukov, V.F., Mittova, I.Ya., Shvets, V.A., Tomina, E.V., Sladkopevtsev, B.V., and Tret’yakov, N.N., Spectral ellipsometry study of thin films grown on GaAs by chemically stimulated thermal oxidation, Inorg. Mater., 2014, vol. 50, no. 9, pp. 882–887. doi 10.1134/S0020168514090052

    Article  CAS  Google Scholar 

  20. Tretyakov, N.N., Mittova, I.Ya., Sladkopevtsev, B.V., Samsonov, A.A., and Andreenko, S.Yu., Effect of a magnetron-sputtered MnO2 layer on the thermal oxidation kinetics of InP and the composition and morphology of the resultant films, Inorg. Mater., 2017, vol. 53, no. 1, pp. 65–71. doi 10.1134/S0020168517010174

    Article  CAS  Google Scholar 

  21. Samsonov, A.A., Mittova, I.Ya., Valyukhov, D.P., Tomina, E.V., and Lukin, A.N., Thermal oxidation of InP with V2O5 + PbO nanolayers of different compositions, Inorg. Mater., 2011, vol. 47, no. 2, pp. 100–106. doi 10.1134/S0020168511020154

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by the Russian Foundation for Basic Research, grant no. 18-03-00354a. In our work we used equipment at the Shared Research Facilities Center, Voronezh State University. We are grateful to A.S. Chizhov (Department of Inorganic Chemistry, Faculty of Chemistry, Moscow State University) for studying the electrical transport properties of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Sladkopevtsev.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittova, I.Y., Sladkopevtsev, B.V., Tomina, E.V. et al. Preparation of Dielectric Films via Thermal Oxidation of MnO2/GaAs. Inorg Mater 54, 1085–1092 (2018). https://doi.org/10.1134/S0020168518110109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518110109

Keywords:

Navigation