Skip to main content
Log in

Structure and Hardness of Ceramics Produced through High-Temperature Nitridation of Titanium Foil

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the variation in the phase composition, elemental composition, and microstructure of rolled titanium samples during thermal annealing in a nitrogen atmosphere at 1300, 1500, 1700, and 2000°C. The results demonstrate that the nitridation process can yield compact titanium nitride-based ceramics or TiN/TiN x /α-Ti〈N〉 heterostructures. X-ray diffraction data for the near-surface region of the samples before and after nitridation and those for cross-sectional fracture surfaces of heterostructures are used to infer orientation relationships between the TiN phase and α-Ti〈N〉 solid solution. Scanning electron microscopy results for cross-sectional fracture surfaces indicate that complete nitridation of the samples leads to the formation of a three-layer microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications, Brunette, D.M., Ed., New York: Springer, 2001.

  2. Cyster, L.A., Grant, D.M., Parker, K.G., and Parker, T.L., The effect of surface chemistry and structure of titanium nitride (TiN) films on primary hippocampal cells, Biomol. Eng., 2002, vol. 19, pp. 171–175.

    Article  CAS  Google Scholar 

  3. Tribology of Engineered Surfaces, in Wear Materials, Mechanisms and Practice, Stachowiak, G.W., New York: Wiley, 2005.

  4. Toth, L.E., Transition Metal Carbides and Nitrides, New York: Academic, 1971.

    Google Scholar 

  5. Kiuchi, M., Tomita, M., Fujii, K., Satou, M., and Shimizu, R., Titanium nitride crystal growth with preferred orientation by dynamic mixing method, Jpn. J. Appl. Phys., 1987, vol. 26, no. 6, pp. L938–L940.

    Article  CAS  Google Scholar 

  6. Ingo, G.M., Kaciulis, S., Mezzi, A., Valente, T., Casadei, F., and Gusmanoa, G., Characterization of composite titanium nitride coatings prepared by reactive plasma spraying, Electrochim. Acta, 2005, vol. 50, pp. 4531–4537.

    Article  CAS  Google Scholar 

  7. Danek, M., Liao, M., Tseng, J., Littau, K., Saigal, D., Zhang, H., Mosely, R., and Eizenberg, M., Resistivity reduction and chemical stabilization of organometallic chemical vapor deposited titanium nitride by nitrogen of plasma, Appl. Phys. Lett., 1996, vol. 68, no. 7, pp. 1015–1016.

    Article  CAS  Google Scholar 

  8. Fix, R.M., Gordon, R.G., and Hoffman, D.M., Synthesis of films by atmospheric pressure chemical vapor deposition using amido and imido titanium(IV) compounds as precursors, Chem. Mater., 1990, vol. 2, pp. 235–241.

    Article  CAS  Google Scholar 

  9. Bendavid, A., Martin, P.J., Wang, X., Wittling, M., and Kinder, T.J., Deposition and modification of titanium nitride by ion assisted arc deposition, J. Vac. Sci. Technol., A, 1995, vol. 13, pp. 1658–1664.

    Article  CAS  Google Scholar 

  10. Calka, A., Formation of titanium and zirconium nitrides by mechanical alloying, Appl. Phys. Lett., 1991, vol. 59, no. 13, pp. 1568–1569.

    Article  CAS  Google Scholar 

  11. Castro, D.T. and Ying, J.Y., Synthesis and sintering of nanocrystalline titanium nitride, Nanostruct. Mater., 1997, vol. 9, pp. 67–70.

    Article  CAS  Google Scholar 

  12. Shin, D.H., Hong, Y.C., and Uhm, H.S., Production of nanocrystalline titanium nitride powder by atmospheric microwave plasma torch in hydrogen/nitrogen gas, J. Am. Ceram. Soc., 2005, vol. 88, no. 10, pp. 2736–2739.

    Article  CAS  Google Scholar 

  13. Marin-Ayral, R.M., Pascal, C., Martinez, F., and Tedenac, J.C., Simultaneous synthesis and densification of titanium nitride by high pressure combustion synthesis, J. Eur. Ceram. Soc., 2000, vol. 20, pp. 2679–2684.

    Article  CAS  Google Scholar 

  14. Yang, X., Li, C., Yang, L., Yan, Y., and Qian, Y., Reduction-nitridation synthesis of titanium nitride nanocrystals, J. Am. Ceram. Soc., 2003, vol. 86, no. 1, pp. 206–208.

    Article  CAS  Google Scholar 

  15. Ramanuja, N., Levy, R.A., Dharmadhikari, S.N., Ramos, E., Pearce, C.W., Menasian, S.C., Schamberger, P.C., and Collins, C.C., Synthesis and characterization of low pressure chemically vapor deposited titanium nitride films using TiCl4 and NH3, Mater. Lett., 2002, vol. 57, pp. 261–269.

    Article  CAS  Google Scholar 

  16. Fix, R.M., Gordon, R.G., and Hoffman, D.M., Synthesis of thin films by atmospheric pressure chemical vapor deposition using amido and imido titanium(IV) compounds as precursors, Chem. Mater., 1990, vol. 2, pp. 235–241.

    Article  CAS  Google Scholar 

  17. Kuznetsov, K.B., Solntsev, K.A., and Chernyavskii, A.S., RF Patent 2 337 058, 2008.

    Google Scholar 

  18. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem. Spravochnik (Phase Diagrams of Binary Metallic Systems: A Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996

  19. Kovalev, I.A., Kuznetsov, K.B., Zufman, V.Yu., Ogarkov, A.I., Shevtsov, S.V., Kannykin, S.V., Chernyavskii, A.S., and Solntsev, K.A., High-temperature titanium nitridation kinetics, Inorg. Mater., 2016, vol. 52, no. 12, pp. 1230–1234.

    Article  CAS  Google Scholar 

  20. Pecharsky, V.K. and Zavalij, P.Y., Fundamentals of Powder Diffraction and Structural Characterization of Materials, Berlin: Springer, 2009.

    Google Scholar 

  21. Petříček, V., Dušek, M., and Palatinus, L., Crystallographic computing system JANA2006: general features, Z. Kristallogr., 2014, vol. 229, no. 5, pp. 345–352.

    Google Scholar 

  22. Höche, D. Schikora, H., et al., Tin-coating formation by pulsed Nd:YAG laser irradiation of titanium in nitrogen, J. Coat. Technol. Res., 2008, vol. 5, no. 14, pp. 505–512.

    Article  Google Scholar 

  23. Samsonov, G.V., Nitridy (Nitrides), Kiev: Naukova Dumka, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Ogarkov.

Additional information

Original Russian Text © S.V. Shevtsov, I.A. Kovalev, A.I. Ogarkov, S.V. Kannykin, D.V. Prosvirnin, A.S. Chernyavskii, K.A. Solntsev, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 3, pp. 321–326.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevtsov, S.V., Kovalev, I.A., Ogarkov, A.I. et al. Structure and Hardness of Ceramics Produced through High-Temperature Nitridation of Titanium Foil. Inorg Mater 54, 295–300 (2018). https://doi.org/10.1134/S0020168518030135

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518030135

Keywords

Navigation