Skip to main content
Log in

Evaluation of the Size of the Inelastic Deformation Zone at a Crack Tip Based on the Analysis of Displacement Fields

  • Mechanics of Materials: Strength, Lifetime, Safety
  • Published:
Inorganic Materials Aims and scope

Abstract

The damaged zone (the inelastic deformation zone) near a crack tip is the region where the stress–strain state (SSS) cannot be described by fundamental functions in the solution of the elastic problem of a crack (the Williams solution). For the description of SSS outside the damaged zone, the Williams expansion is used, which requires a number of regular terms to be considered. It is proposed to use digital optical techniques for measuring the SSS parameters in the crack zone to provide a large amount of experimental information in the form of displacement fields on the surface of the studied object directly in digital form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mekhanika razrusheniya i prochnost’ materialov (Fracture Mechanics and Strength of Materials), Panasyuk, V.V., Ed., Kiev: Naukova Dumka, 1988–1990, vols. 1, 3,4.

  2. Makhutov, N.A., Konstruktsionnaya prochnost’, resurs i tekhnogennaya bezopasnost’. Chast. 1. Kriterii prochnosti i resursa (Structural Strength, Service Life, and Technogenic Safety, Part 1: Criteria of Strength and Service Life), Novosibirsk: Nauka, 2005

    Google Scholar 

  3. Makhutov, N.A., Konstruktsionnaya prochnost’, resurs i tekhnogennaya bezopasnost’. Chast. 2. Obosnovanie resursa i bezopasnosti (Structural Strength, Service Life, and Technogenic Safety, Part 2: Substantiation of Service Life and Safety), Novosibirsk: Nauka, 2005. Obosnovanie resursa i bezopasnosti (Substantiation of resource and safety), 2005.

    Google Scholar 

  4. Parton, V.Z. and Morozov, E.M., Mekhanika uprugoplasticheskogo razrusheniya: spetsial’nye zadachi mekhaniki razrusheniya (The Mechanics of Elastic-Plastic Fracture: Special Objectives in Fracture Mechanics), Moscow: URSS Editorial, 2008.

    Google Scholar 

  5. Matvienko, Yu.G., Modeli i kriterii mekhaniki razrusheniya (Models and Criteria for Fracture Mechanics), Moscow: Fizmatlit, 2006.

    Google Scholar 

  6. Astaf’ev, V.I., Radaev, Yu.N., and Stepanova, L.V., Nelineinaya mekhanika razrusheniya (Nonlinear Fracture Mechanics), Samara: Samar. Gos. Univ., 2004.

    Google Scholar 

  7. Volkov, I.A. and Korotkikh, Yu.G., Uravneniya sostoyaniya vyazkouprugoplasticheskikh sred s povrezhdeniyami (Equations of the State for the Viscoelasticoplastic Media with Defects), Moscow: Fizmatlit, 2008.

    Google Scholar 

  8. Morozov, E.M. and Nikishkov, G.P., Metod konechnykh elementov v mekhanike razrusheniya (The Use of Method of Finite Elements in Fracture Mechanics), Moscow: Izd. LKI, 2008.

    Google Scholar 

  9. Kudzhanov, V.N., Komp’yuternoe modelirovanie deformirovaniya, povrezhdennosti i razrusheniya neuprugikh materialov i konstruktsii. Uchebnoe posobie (Computer Modeling of Deformation, Damage, and Destruction of Nonelastic Materials and Structures: Manual), Moscow: Mosk. Fiz.-Tekh. Inst., 2008.

    Google Scholar 

  10. Airikh, V.A. and Glagolev, V.V., The stress state of the elastic-plastic bodies with crack, Izv. Tulsk. Gos. Univ., Estestv. Nauki, 2014, no. 3, pp. 58–70.

    Google Scholar 

  11. Klevtsov, G.V., The formation pattern of elastic-plastic zone at the crack tip in the different types of loading and x-ray diagnostics of fractures, Vestn. Orenb. Gos. Univ., Estestv. Tekhn. Nauki., 2006, vol. 2, no. 1, pp. 81–88.

    Google Scholar 

  12. Emel’yanov, O.V. and Pelipenko, M.P., Evaluation of the size of the plastic deformation zone at the top of the fatigue crack affected by “tension” overloads, Vestn. Yuzh.-Ural. Gos. Univ., 2014, no. 4, pp. 21–29.

    Google Scholar 

  13. Botvina, L.R., Razrushenie: kinetika, mekhanizmy, obshchie zakonomernosti (Destruction: Kinetics, Mechanisms, and General Regularities), Moscow: Nauka, 2008.

    Google Scholar 

  14. Poletika, T.M., Narimanova, G.N., and Kolosov, S.V., Plastic flow in the zirconium alloys with a hexagonal tight-packed lattice on the macro-and microlevels, Izv. Tomsk. Gos. Politekh. Univ., 2004, vol. 307, no. 4, pp. 126–128.

    Google Scholar 

  15. Klyushnikov, V.A., Mishakin, V.V., et al., Analysis of metals surface under protective coating using electromagnetic acoustic converter, Vestn. Nizhegorod. Gos. Univ., 2010, no. 5, pp. 113–115.

    Google Scholar 

  16. Pleshanov, V.S., Kibitkin, V.V., Napryushkin, A.A., and Solodukhin, A.I., Deformations measurement in the materials by digital image correlation method, Izv. Tomsk. Gos. Politekh. Univ., 2008, vol. 312, no. 2, pp. 343–349.

    Google Scholar 

  17. Digital Speckle Pattern Interferometry and Related Techniques, Rastogi, P., Ed., Chichester: Wiley, 2001.

  18. Yates, J.R., Zanganeh, M., and Tai, Y.H., Quantifying crack tip displacement fields with DIC, Eng. Fract. Mech., 2010, vol. 77, pp. 1682–1692.

    Article  Google Scholar 

  19. Pisarev, V.S., Matvienko, Yu.G., and Odintsev, I.N., Evaluation of the fracture mechanics parameters with a small crack length increment, Zavod. Labor., Diagn. Mater., 2012, vol. 78, no. 4, pp. 45–51.

    Google Scholar 

  20. Matvienko, Yu.G., Pisarev, V.S., Eleonsky, S.I., and Chernov, A.V., Determination of fracture mechanics parameters by measurements of local displacements due to crack length increment, Fatigue Fract. Eng. Mater. Struct., 2014, vol. 37, pp. 1306–1318.

    Article  Google Scholar 

  21. Litvinov, I.A., Matvienko, Yu.G., and Razumovskii, I.A., Determination of accuracy in distribution of non-singular components of stress fields at the crack tip by extrapolation method, Mashinostr. Inzh. Obraz., 2014, no. 4, pp. 43–51.

    Google Scholar 

  22. Benthem, J.R., A quarter-infinite crack in a half-space; alternative and additional solutions, Int. J. Solid Struct., 1980, vol. 16, no. 2, pp. 119–130.

    Article  Google Scholar 

  23. Matvienko, Yu.G., Nonsingular T-tensions in the problems of two-parameter fracture mechanics, Zavod. Lab., Diagn. Mater., 2012, no. 2, pp. 51–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Chernyatin.

Additional information

Original Russian Text © A.S. Chernyatin, I.A. Razumovskii, Yu.G. Matvienko, 2016, published in Zavodskaya Laboratoriya, Diagnostika Materialov, 2016, Vol. 82, No. 12, pp. 45–51.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernyatin, A.S., Razumovskii, I.A. & Matvienko, Y.G. Evaluation of the Size of the Inelastic Deformation Zone at a Crack Tip Based on the Analysis of Displacement Fields. Inorg Mater 53, 1578–1584 (2017). https://doi.org/10.1134/S0020168517150055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517150055

Keywords

Navigation