Skip to main content
Log in

Fluorination of Bi1.8Fe1.2SbO7 pyrochlore solid solutions

  • Published:
Inorganic Materials Aims and scope

Abstract

A technique has been developed for fluorinating the pyrochlore oxide Bi1.8Fe0.2FeSbO7, and a compound with the composition Bi1.8Fe1.2SbO7–x/2Fx has been obtained. The synthesized oxyfluoride also has the pyrochlore structure (sp. gr. Fd3m), with a lattice parameter a = 10.4443(1) Å (R wp = 5.2). It has been shown that the charge balance upon fluorine substitution for oxygen is maintained not through partial reduction of Fe3+ to Fe2+ but through the incorporation of fluorine into oxygen vacancies. The magnetic behavior of the fluorinated pyrochlore phase is determined by the persisting frustration of the octahedral sublattice, which is responsible for the development of a spin glass state below T f = 12 K. The fluorination-induced changes in the anion sublattice led to an increase in the antiferromagnetic exchange interaction between neighboring Fe3+ ions and changes in the dynamic properties of the spin glass phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chon, M.P., Tan, K.B., Khaw, C.C., Zainal, Z., Taufiq-Yap, Y.H., and Tan, P.Y., Synthesis, structural and electrical properties of novel pyrochlores in the Bi2O3–CuO–Ta2O5 ternary system, Ceram. Int., 2012, vol. 38, pp. 4253–4261.

    Article  CAS  Google Scholar 

  2. Liu, Y., Withers, R.L., Chen, H., Li, Q., and Tan, H., Raman spectra, photoluminescence and dielectric relaxation in Bi1.5ZnNb1.5O7 pyrochlore, Curr. Appl. Phys, 2011, vol. 11, no. 3, pp. S171–S174.

    Article  Google Scholar 

  3. Valant, M., Babu, G.S., Vrcon, M., Kolodiazhnyi, T., and Axelsson, A.-K., Pyrochlore range from Bi2O3–Fe2O3–TeO3 system for LTCC and photocatalysis and the crystal structure of new Bi3(Fe0.56Te0.44)3O11, J. Am. Ceram. Soc., 2012, vol. 95, pp. 644–650.

    Article  CAS  Google Scholar 

  4. Kudo, A. and Miseki, Y., Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 2009, vol. 38, pp. 253–278.

    Article  CAS  Google Scholar 

  5. Playford, H.Y., Modeshia, D.R., Barney, E.R., Hannon, A.C., Wright, C.S., Fisher, J.M., Amieiro-Fonseca, A., Thompsett, D., O’Dell, L.A., Rees, G.J., Smith, M.E., Hanna, J.V., and Walton, R.I., Structural characterization and redox catalytic properties of cerium(IV) pyrochlore oxides, Chem. Mater., 2011, vol. 23, pp. 5464–5473.

    Article  CAS  Google Scholar 

  6. Oh, S.H., Black, R., Pomerantseva, E., Lee, J.H., and Nazar, L.F., Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium–O2 batteries, Nat. Chem., 2012, vol. 4, pp. 1004–1010.

    Article  CAS  Google Scholar 

  7. Vega, J.A., Spinner, N., Catanese, M., and Mustain, W.E., Carbonate selective Ca2Ru2O7–y pyrochlore enabling room temperature carbonate fuel cells: I. Synthesis and physical characterization. II. Verification of carbonate cycle and electrochemical performance, J. Electrochem. Soc., 2012, vol. 159, no. 1, pp. B18–B23.

    Google Scholar 

  8. Yamaura, J., Ohgushi, K., Ohsumi, H., Hasegawa, T., Yamauchi, I., Sugimoto, K., Takeshita, S., Tokuda, A., Takata, M., Udagawa, M., Takigawa, M., Harima, H., Arima, T., and Hiroi, Z., Tetrahedral magnetic order and the metal–insulator transition in the pyrochlore lattice of Cd2Os2O7, Phys. Rev. Lett., 2012, vol. 108, paper 247205.

    Article  CAS  Google Scholar 

  9. Fujimoto, S., Geometrical-frustration-induced (semi)-metal-to-insulator transition, Phys. Rev. Lett., 2012, vol. 89, no. 22, paper 226402.

    Article  Google Scholar 

  10. Shimakawa, Y., Kubo, Y., and Manako, T., Giant magnetoresistance in Tl2Mn2O7 with the pyrochlore structure, Nature, 1996, vol. 379, pp. 53–55.

    Article  CAS  Google Scholar 

  11. Subramanian, M.A., Toby, B.H., Ramirez, A.P., Marshall, W.J., Sleight, A.W., and Kwei, G.H., Colossal magnetoresistance without Mn3+/Mn4+ double exchange in the stoichiometric pyrochlore Tl2Mn2O7, Science, 1996, vol. 273, no. 5271, pp. 81–84.

    Article  CAS  Google Scholar 

  12. Ueda, K., Iguchi, S., Suzuki, T., Ishiwata, S., Taguchi, Y., and Tokura, Y., Topological Hall effect in pyrochlore lattice with varying density of spin chirality, Phys. Rev. Lett., 2012, vol. 108, paper 156601.

    Article  CAS  Google Scholar 

  13. Onose, Y., Ideue, T., Katsura, H., Shiomi, Y., Nagaosa, N., and Tokura, Y., Observation of the magnon Hall effect, Science, 2012, vol. 329, no. 5989, pp. 297–299.

    Article  Google Scholar 

  14. Sergienko, I., Keppens, V., McGuire, M., Jin, R., He, J., Curnoe, S., Sales, B., Blaha, P., Singh, D., Schwarz, K., and Mandrus, D., Metallic “ferroelectricity” in the pyrochlore Cd2Re2O7, Phys. Rev. Lett., 2004, vol. 92, paper 065501.

    Article  CAS  Google Scholar 

  15. Lian, J., Wang, L., Wang, S., Chen, J., Boatner, L., and Ewing, R., Nanoscale manipulation of pyrochlore: new nanocomposite ionic conductors, Phys. Rev. Lett., 2001, vol. 87, paper 145901.

    Article  CAS  Google Scholar 

  16. Hiroi, Z., Yamaura, J.-I., Yonezawa, S., and Harima, H., Chemical trends of superconducting properties in pyrochlore oxides, Phys. C (Amsterdam, Neth.), 2007, vols. 460–462, pp. 20–27.

    Article  Google Scholar 

  17. Vyaselev, O., Arai, K., Kobayashi, K., Yamazaki, J., Kodama, K., Takigawa, M., Hanawa, M., and Hiroi, Z., Superconductivity and magnetic fluctuations in Cd2Re2O7 via Cd nuclear magnetic resonance and Re nuclear quadrupole resonance, Phys. Rev. Lett., 2002, vol. 89, paper 017001.

    Article  CAS  Google Scholar 

  18. Kasahara, Y., Shimono, Y., Shibauchi, T., Matsuda, Y., Yonezawa, S., Muraoka, Y., and Hiroi, Z., Thermal conductivity of the pyrochlore superconductor KOs2O6: strong electron correlations and fully gapped superconductivity, Phys. Rev. Lett., 2006, vol. 96, paper 247004.

    Article  CAS  Google Scholar 

  19. Dong, X.W., Dong, S., Wang, K.F., Wan, J.G., and Liu, J.-M., Enhancement of ferroelectricity in Crdoped Ho2Ti2O7, Appl. Phys. Lett., 2010, vol. 96, paper 242904.

    Article  Google Scholar 

  20. Dong, X.W., Wang, K.F., Luo, S.J., Wan, J.G., and Liu, J., Coexistence of magnetic and ferroelectric behaviors of pyrochlore Ho2Ti2O7, J. Appl. Phys., 2009, vol. 106, paper 104101.

    Article  Google Scholar 

  21. Kamba, S., Nuzhnyy, D., Denisov, S., Veljko, S., Bovtun, V., Savinov, M., Petzelt, J., Kalnberga, M., and Sternberg, A., Quantum paraelectric behavior of pyrochlore Pb1.83Mg0.29Nb1.71O6.39, Phys. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 76, paper 054125.

    Article  Google Scholar 

  22. Gardner, J.S., Gingras, M.J.P., and Greedan, J.E., Magnetic pyrochlore oxides, Rev. Mod. Phys., 2010, vol. 82, pp. 53–107.

    Article  CAS  Google Scholar 

  23. Wells, A., Structural Inorganic Chemistry, Oxford: Clarendon, 1984, vol.1.

  24. Egorysheva, A.V., Ellert, O.G., Maksimov, Yu.V., Volodin, V.D., Efimov, N.N., and Novotortsev, V.M., Subsolidus phase equilibria and magnetic characterization of the pyrochlore in the Bi2O3–Fe2O3–Sb2Ox system, J. Alloys Compd., 2013, vol. 579, pp. 311–314.

    Article  CAS  Google Scholar 

  25. Egorysheva, A.V., Ellert, O.G., Gajtko, O.M., Efimov, N.N., Svetogorov, R.D., Zubavichus, Y.V., and Grigorieva, A.V., The Bi2O3–Fe2O3–Sb2O5 system phase diagram refinement, Bi3FeSb2O11 structure peculiarities and magnetic properties, J. Solid State Chem., 2015, vol. 225, pp. 278–284.

    Article  CAS  Google Scholar 

  26. Ellert, O.G., Egorysheva, A.V., Maksimov, Yu.V., Gajtko, O.M., Efimov, N.N., and Svetogorov, R.D., Isomorphism in the Bi1.8Fe1.2(1–x)Ga1.2xSbO7 pyrochlores with spin glass transition, J. Alloys Compd., 2016, vol. 688, pp. 1–7.

    Article  CAS  Google Scholar 

  27. Hogarth, D.D., Classification and nomenclature of the pyrochlore group, Am. Mineral., 1977, vol. 62, pp. 403–410.

    CAS  Google Scholar 

  28. Atuchin, V.V., Molokeev, M.S., Yurkin, G.Y., Gavrilova, T.A., Kesler, V.G., Laptash, N.M., Flerov, I.N., and Patrin, G.S., Synthesis, structural, magnetic, and electronic properties of cubic CsMnMoO3F3 oxyfluoride, J. Phys. Chem. C, 2012, vol. 116, pp. 10162–10170.

    Article  CAS  Google Scholar 

  29. Bernard, D., Pannetier, J., and Lucas, J., Hg2M2F6S et Hg2M2F6O: deux nouvelles familles de pyrochlores contenant du mercure et des métaux M de transition divalents, J. Solid State Chem., 1975, vol. 14, pp. 328–334.

    Article  CAS  Google Scholar 

  30. Kubel, F. and Dundjerski, B., Synthese und Kristallstrukturanalyse von NaSrMg2F7, einer vollständig fluorierten Verbindung des Pyrochlortyps, Z. Anorg. Allg. Chem., 2001, vol. 627, pp. 1589–1592.

    Article  CAS  Google Scholar 

  31. Hancock, C.A., Herranz, T., Marco, J.F., Berry, F.J., and Slater, P.R., Low temperature fluorination of Sr3Fe2O7–x with polyvinylidene fluoride: an X-ray powder diffraction and Mössbauer spectroscopy study, J. Solid State Chem., 2012, vol. 186, pp. 195–203.

    Article  CAS  Google Scholar 

  32. Berry, F.J., Ren, X., Heap, R., Slater, P., and Thomas, M.F., Fluorination of perovskite-related SrFeO3–δ, Solid State Commun., 2005, vol. 134, pp. 621–624.

    Article  CAS  Google Scholar 

  33. Vanderah, T.A., Levin, I., and Lufaso, M.W., An unexpected crystal-chemical principle for the pyrochlore structure, Eur. J. Inorg. Chem., 2005, vol. 22, pp. 2895–2901.

    Article  Google Scholar 

  34. Shannon, R.D. and Prewitt, C.T., Effective ionic radii in oxides and fluorides, Acta Crystallogr., Sect. B: Struct. Sci., 1969, vol. 25, pp. 925–946.

    Article  CAS  Google Scholar 

  35. Clemens, O., Rongeat, C., Reddy, M.A., Giehr, A., Fichtner, M., and Hahn, H., Electrochemical fluorination of perovskite type BaFeO2.5, Dalton Trans., 2014, vol. 43, pp. 15771–15778.

    Article  CAS  Google Scholar 

  36. Clemens, O., Kruk, R., Patterson, E.A., Loho, C., Reitz, C., Wright, A.J., Knight, K.S., Hahn, H., and Slater, P.R., Introducing a large polar tetragonal distortion into Ba-doped BiFeO3 by low-temperature fluorination, Inorg. Chem., 2014, vol. 53, no. 23, pp. 12572–12583.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Egorysheva.

Additional information

Original Russian Text © A.V. Egorysheva, O.G. Ellert, O.M. Gaitko, M.N. Brekhovskikh, I.A. Zhidkova, Yu.V. Maksimov, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 9, pp. 982–988.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorysheva, A.V., Ellert, O.G., Gaitko, O.M. et al. Fluorination of Bi1.8Fe1.2SbO7 pyrochlore solid solutions. Inorg Mater 53, 962–968 (2017). https://doi.org/10.1134/S0020168517090072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517090072

Keywords

Navigation