Skip to main content
Log in

Inverse correlation between the ionic and thermal conductivities of single crystals of M1–x R x F2 + x (M = Ca, Ba; R—rare-earth element) fluorite solid solutions

  • Published:
Inorganic Materials Aims and scope

Abstract

The logarithm of the 500-K fluoride ion conductivity of M1–x R x F2 + x (M = Ca, Ba; R = rare-earth element) crystals is shown to be inversely correlated with their 100-K thermal conductivity: materials with high ionic conductivity have low thermal conductivity and vice versa. For groups of solid solutions containing defect clusters similar in structure, the correlation coefficient is about 0.85.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fedorov, P.P. and Popov, P.A., Principle of equivalence of disorder sources and the thermal conductivity of solids, Nanosist.: Fiz., Khim., Mat., 2013, vol. 4, pp. 148–159.

    Google Scholar 

  2. Sorokin, N.I., Karimov, D.N., Buchinskaya, I.I., Popov, P.A., and Sobolev, B.P., Electrical and thermal conductivities of congruently melting single crystals of isovalent M1−x M' x F2 solid solutions (M, M' = Ca, Sr, Cd, Pb) in relation to their defect fluorite structure, Crystallogr. Rep., 2015, vol. 60, no. 4, pp. 532–536.

    Article  CAS  Google Scholar 

  3. Popov, P.A., Sidorov, A.A., Kul’chenkov, E.A., Anishchenko, A.M., Avetissov, I.Ch., Sorokin, N.I., and Fedorov, P.P., Thermal conductivity and expansion of PbF2 single crystals, Ionics, 2017, vol. 23, no. 1, pp. 233–239.

    Article  CAS  Google Scholar 

  4. Sobolev, B.P., The Rare Earth Trifluorides, part 2: Introduction to Materials Science of Multicomponent Metal Fluoride Crystals, Barcelona: Inst. d’Estudis Catalans, 2001. https://www.books.google.ru/books/rare earth trifluorides.

    Google Scholar 

  5. Sobolev, B.P., Golubev, A.M., and Herrero, P., Fluorite M1–x R x F2 + x (M = Ca, Sr, Ba; R = rare earth elements) as nanostructured materials, Crystallogr. Rep., 2003, vol. 48, no. 1, pp. 141–161.

    Article  CAS  Google Scholar 

  6. Sobolev, B.P., The Rare Earth Trifluorides, part 1: The High Temperature Chemistry of the Rare Earth Trifluorides, Barcelona: Inst. d’Estudis Catalans, 2000. https://www.books.google.ru/books/rare earth trifluorides.

    Google Scholar 

  7. Turkina, T.M., Fedorov, P.P., and Sobolev, B.P., Stability of a flat solidification front during the melt growth of single crystals of M1–x R x F2 + x (M = Ca, Sr, Ba; R = rare earth element) solid solutions, Kristallografiya, 1986, vol. 31, no. 1, pp. 146–152.

    CAS  Google Scholar 

  8. Sobolev, B.P., Zhmurova, Z.I., Karelin, V.V., Krivandina, E.A., Fedorov, P.P., and Turkina, T.M., Preparation of single crystals of non-stoichiometric fluorite phases M1–x R x F2 + x by Bridgman-Stockbarger method in: “Growth of crystals”, 1988, V. 16, pp. 65–79. Ed. by Kh.S. Bagdasarov and E.L. Lube. Consultants Bureau, N.Y.–London.

    Google Scholar 

  9. Kuznetsov, S.V. and Fedorov, P.P., Morphological stability of solid–liquid interface during melt crystallization of solid solutions M1–x R x F2 + x , Inorg. Mater., 2008, vol. 44, no. 13, pp. 1434–1458.

    Article  CAS  Google Scholar 

  10. Sobolev, B.P., Sorokin, N.I., and Bolotina, N.B., Nonstoichiometric single crystals M1–x R x F2 + x and R1–y MyF3–y (M–Ca, Sr, Ba; R–rare earth elements) as fluorine-conducting solid electrolytes, Progress in Fluorine Science, Tressaud, A. and Poeppelmeier, K.V., Eds., Amsterdam: Elsevier, 2016, vol. 1, chapter 21, pp. 465–491.

    Google Scholar 

  11. Popov, P.A. and Fedorov, P.P., Teploprovodnost’ ftoridnykh opticheskikh materialov (Thermal Conductivity of Optical Fluoride Materials), Bryansk: Desyatochka, 2012.

    Google Scholar 

  12. Fedorov, P.P., Turkina, T.M., Sobolev, B.P., Mariani, E., and Svantner, M., Ionic conductivity in the single crystals of non-stoichiometric fluorite phases M1–x R x F2 + x (M = Ca, Sr, Ba; R = Y, La–Lu), Solid State Ionics, 1982, vol. 6, no. 4, pp. 331–335.

    Article  CAS  Google Scholar 

  13. Ivanov-Shits, A.K., Sorokin, N.I., Fedorov, P.P., and Sobolev, B.P., Specific features of ion transport in nonstoichiometric Sr1–x R x F2 + x phases (R = La–Lu, Y) with the fluorite-type structure, Solid State Ionics, 1989, vol. 31, no. 4, pp. 253–268.

    Article  CAS  Google Scholar 

  14. Ivanov-Shits, A.K., Sorokin, N.I., Fedorov, P.P., and Sobolev, B.P., Specific features of ion transport in nonstoichiometric Ba1–x R x F2 + x phases (R = La–Lu) with the fluorite-type structure, Solid State Ionics, 1989, vol. 31, no. 4, pp. 269–280.

    Article  CAS  Google Scholar 

  15. Ivanov-Shits, A.K., Sorokin, N.I., Fedorov, P.P., and Sobolev, B.P., Specific features of ion transport in nonstoichiometric fluorite-type phases Ca1–x R x F2 + x (R = La–Lu, Y, Sc), Solid State Ionics, 1990, vol. 37, nos. 1–2, pp. 125–137.

    Article  CAS  Google Scholar 

  16. Sorokin, N.I., Fedorov, P.P., and Sobolev, B.P., Superionic materials based on lead fluoride, Inorg. Mater., 1997, vol. 33, no. 1, pp. 1–11.

    CAS  Google Scholar 

  17. Sorokin, N.I., Fedorov, P.P., Ivanov-Shits, A.K., and Sobolev, B.P., Fluorine ion conductivity of fluoritelike solid-solution single crystals in the CdF2 matrix, Fiz. Tverd. Tela (Leningrad), 1988, vol. 30, no. 5, pp. 1537–1539.

    CAS  Google Scholar 

  18. Sorokin, N.I., Superionic transport in solid fluoride solutions with a fluorite structure, Russ. J. Electrochem., 2006, vol. 42, no. 7, pp. 744–759.

    Article  CAS  Google Scholar 

  19. Popov, P.A., Dukel’skii, K.V., Mironov, I.A., Smirnov, A.N., Smolyanskii, P.A., Fedorov, P.P., Osiko, V.V., and Basiev, T.T., Thermal conductivity of CaF2 optical ceramics, Dokl. Phys., 2007, vol. 52, no. 1, pp. 7–9.

    Article  CAS  Google Scholar 

  20. Popov, P.A., Fedorov, P.P., Kuznetsov, S.V., Konyushkin, V.A., Osiko, V.V., and Basiev, T.T., Thermal conductivity of single crystals of Ca1–x Yb x F2 + x solid solutions, Dokl. Phys., 2008, vol. 53, no. 4, pp. 198–200.

    Article  CAS  Google Scholar 

  21. Popov, P.A., Fedorov, P.P., Reiterov, V.M., Garibin, E.A., Demidenko, A.A., Mironov, I.A., and Osiko, V.V., Thermal conductivity of single crystals of Ca1–x Er x F2 + x and Ca1–x Tm x F2 + x solid solutions, Dokl. Phys., 2012, vol. 57, no. 3, pp. 97–99.

    Article  CAS  Google Scholar 

  22. Popov, P.A., Fedorov, P.P., Garibin, E.A., Smirnov, A.N., Gusev, P.E., and Krutov, M.A., Thermal conductivity of Ca1–x Ho x F2 + x optical ceramics, Inorg. Mater., 2012, vol. 48, no. 8, pp. 857–860.

    Article  CAS  Google Scholar 

  23. Popov, P.A., Fedorov, P.P., and Osiko, V.V., Thermal conductivity of Ca1–x Y x F2 + x solid solutions, Dokl. Phys. 2014, vol. 59, no. 5, pp. 199–202.

    Article  CAS  Google Scholar 

  24. Popov, P.A., Fedorov, P.P., and Konyushkin, V.A., Heat conductivity of Ca1–x R x F2 + x (R = La, Ce, or Pr; 0 ≤ x ≤ 0.25) heterovalent solid solutions, Crystallogr. Rep., 2015, vol. 60, no. 5, pp. 744–748.

    Article  CAS  Google Scholar 

  25. Popov, P.A., Fedorov, P.P., Kuznetsov, S.V., Konyushkin, V.A., Osiko, V.V., and Basiev, T.T., Thermal conductivity of single crystals of Ba1–x Yb x F2 + x solid solution, Dokl. Phys., 2008, vol. 53, no. 7, pp. 353–355.

    Article  CAS  Google Scholar 

  26. Popov, P.A., Fedorov, P.P., and Konyushkin, V.A., Thermal conductivity of Ba1–x R x F2 + x (R = La, Ce, Nd, or Gd) solid solutions, Crystallogr. Rep., 2017, vol. 62, no. 2, pp. 283–287.

    Article  CAS  Google Scholar 

  27. Popov, P.A., Fedorov, P.P., Konyushkin, V.A., Nakladov, A.N., Kuznetsov, S.V., Osiko, V.V., and Basiev, T.T., Thermal conductivity of single crystals of Sr1–x Yb x F2 + x solid solution, Dokl. Phys., 2008, vol. 53, no. 8, pp. 413–415.

    Article  CAS  Google Scholar 

  28. Fedorov, P.P. and Osiko, V.V., Crystal growth of fluorides, Bulk Crystal Growth of Electronic, Optical and Optoelectronic Materials, Capper, P., Ed., New York: Wiley, 2005, pp. 339–356.

    Google Scholar 

  29. Ivanov-Shits, A.K., Sorokin, N.I., Fedorov, P.P., and Sobolev, B.P., Electrical conductivity of Sr1–x La x F2 + x (0.03 ≤ x ≤ 0.40) solid solutions, Fiz. Tverd. Tela (Leningrad), 1983, vol. 25, no. 6, pp. 1748–1753.

    CAS  Google Scholar 

  30. Fedorov, P.P., Association of point defects in non stoichiometric M1–x R x F2 + x fluorite-type solid solutions, Butll. Soc. Cat. Cien., 1991, vol. 12, no. 2, pp. 349–381.

    Google Scholar 

  31. Cheetham, A.K., Fender, B.E.F., Steele, D., Taylor, R.I., and Willis, B.T.M., Defect structure of fluorite compounds containing excess anions, Solid State Commun., 1970, vol. 8, no. 3, pp. 171–173.

    Article  CAS  Google Scholar 

  32. Bendall, P.J., Catlow, C.R.A., Corish, J., and Jacobs, P.W.M., Defect aggregation in anion-excess fluorites. Part 2. Clusters containing more than two impurity atoms, J. Solid State Chem., 1984, vol. 51, pp. 159–169.

    Article  CAS  Google Scholar 

  33. Maksimov, B.A., Muradyan, L.A., and Simonov, V.I., Nonstoichiometric fluorite phases, in Kristallografiya i kristallokhimiya (Crystallography and Crystal Chemistry), Moscow: Nauka, 1986, pp. 215–224.

    Google Scholar 

  34. Reau, J.M. and Hagenmuller, P., Correlations between clusterization and electrical properties within fluoritetype anions excess solid solutions: setting of a model, Appl. Phys. A, 1989, vol. 49, pp. 3–12.

    Article  Google Scholar 

  35. Bevan, D.J.M., Greis, O., and Strahle, J., A new structural principle in anion-excess fluorite-related superlattices, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1980, vol. 36, no. 6, pp. 889–890.

    Article  Google Scholar 

  36. Aminov, L.K., Kurkin, I.N., Kurzin, S.P., Gromov, I.A., Mamin, G.V., and Rakhmatullin, R.M., Identification of the La6F37 cubooctahedral clusters in mixed crystals (BaF2)1–x (LaF3)x by the electron paramagnetic resonance method, Phys. Solid State, 2007, vol. 49, no. 11, pp. 1990–1993.

    Article  Google Scholar 

  37. Maksimov, B.A., Solans, Kh., Dudka, A.P., Genkina, E.A., Badria-Font, M., Buchinskaya, I.I., Loshmanov, A.A., Golubev, A.M., Simonov, V.I., Font-Al’taba, M., and Sobolev, B.P., Crystal structure of Ba4 R 3F17 (R = Y, Yb) based on a fluorite matrix: cation ordering and characteristic features of the anion basis, Kristallografiya, 1996, vol. 41, no. 1, pp. 51–59.

    CAS  Google Scholar 

  38. Fedorov, P.P. and Sobolev, B.P., Composition dependence of unit-cell parameters for fluorite M1–x R x F2 + x phases, Kristallografiya, 1992, vol. 37, no. 5, pp. 1210–1219.

    CAS  Google Scholar 

  39. Fedorov, P.P., Heterovalent isomorphism and solid solutions with a variable number of ions in the unit cell, Russ. J. Inorg. Chem., 2000, vol. 45, suppl. 3, pp. S268–S291.

    Google Scholar 

  40. Cahill, D.G., Extremes of heat conduction—pushing the boundaries of the thermal conductivity of materials, MRS Bull., 2012, vol. 37, no. 9, pp. 855–863.

    Article  CAS  Google Scholar 

  41. Aleksandrov, V.B. and Garashina, L.S., New data on the structure of CaF2–TRF3 solid solutions, Dokl. Akad. Nauk SSSR, 1969, vol. 189, no. 2, pp. 307–310.

    CAS  Google Scholar 

  42. Otroshchenko, L.P., Aleksandrov, V.B., Bydanov, N.N., Simonov, V.I., and Sobolev, B.P., Structure refinement of the Ca0.90Y0.10F2.10 solid solution by neutron diffraction, Kristallografiya, 1988, vol. 33, no. 3, pp. 764–765.

    CAS  Google Scholar 

  43. Zhurova, E.A., Maksimov, B.A., Simonov, V.I., and Sobolev, B.P., A structural study of Ca1–x Pr x F2 + x (x = 0.1) crystals at temperatures of 296 and 170 K, Dokl. Ross. Akad. Nauk, 1996, vol. 348, no. 4, pp. 484–487.

    CAS  Google Scholar 

  44. Grigor’eva, N.V., Otroshchenko, L.P., Maksimov, B.A., Verin, I.A., Sobolev, B.P., and Simonov, V.I., X-ray diffraction study of Ca0.65La0.35F2.35 and Ca0.80Yb0.20F2.20 crystals, Kristallografiya, 1996, vol. 41, no. 4, pp. 644–650.

    Google Scholar 

  45. Cao, X.Q., Vassen, R., and Stoever, D., Ceramic materials for thermal barrier coatings, J. Alloys Compd., 2004, vol. 24, pp. 1–10.

    CAS  Google Scholar 

  46. Evans, A.G., Clarke, D.R., and Levi, C.G., The influence of oxides on the performance of advanced gas turbines, J. Eur. Ceram. Soc., 2008, vol. 28, no. 7, pp. 1405–1419.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Fedorov.

Additional information

Original Russian Text © P.P. Fedorov, N.I. Sorokin, P.A. Popov, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 6, pp. 639–645.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, P.P., Sorokin, N.I. & Popov, P.A. Inverse correlation between the ionic and thermal conductivities of single crystals of M1–x R x F2 + x (M = Ca, Ba; R—rare-earth element) fluorite solid solutions. Inorg Mater 53, 626–632 (2017). https://doi.org/10.1134/S0020168517060036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517060036

Keywords

Navigation