Skip to main content
Log in

Specific absorption coefficient of chromium in (TeO2)0.80(MoO3)0.20 glass

  • Published:
Inorganic Materials Aims and scope

Abstract

We have prepared (TeO2)0.80(MoO3)0.20 glass samples containing 0.01 to 0.11 wt % chromium and determined their optical transmission in the range from 450 to 2800 nm. The glasses have been shown to have a strong absorption band centered at 660 nm. From the attenuation coefficient as a function of Cr3+ concentration in the glasses, we have evaluated their specific absorption coefficient, which has been shown to be 190 ± 2 cm–1/wt % at the maximum of the absorption band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vetrone, F., Boyer, J.C., Capobianco, J.A., Speghini, A., and Bettinelli, M., 980 nm upconversion in an Erdoped ZnO–TeO2 glass, Appl. Phys. Lett., 2002, vol. 80, pp. 1752–1754.

    Article  CAS  Google Scholar 

  2. Tamaoka, T., Tanabe, S., Ohara, S., Hayashi, H., and Sugimoto, N., Fabrication and blue upconversion characteristics of Tm-doped tellurite fiber for S-band amplifier, J. Alloys Compd., 2006, vols. 408–412, pp. 848–851.

    Article  Google Scholar 

  3. Dariush Souri, DSC and FTIR spectra of tellurite–vanadate glasses containing molybdenum, Middle-East J. Sci. Res., 2010, vol. 5, no. 1, pp. 44–48.

    Google Scholar 

  4. Shultz, P.C., Optical absorption of the transition elements in vitreous silica, J. Am. Ceram. Soc., 1974, vol. 57, no. 7, pp. 309–313.

    Article  Google Scholar 

  5. Newns, G.R., Pantelis, P., Wilson, J.L., Uffen, R.W.J., and Worthington, R., Absorption losses in glasses and glass fibre waveguides, Optoelectronics, 1973, vol. 5, pp. 289–296.

    CAS  Google Scholar 

  6. Sprierings, G.A.C.M., Optical absorption of transition metals in alkali lime germanosilicate glasses, J. Mater. Sci., 1979, vol. 14, no. 10, pp. 2519–2521.

    Article  Google Scholar 

  7. Day, C.R., France, P.W., Carter, S.F., Moore, M.W., and Williams, J.R., Fluoride fibres for optical transmission, Opt. Quantum Electron., 1990, vol. 22, no. 3, pp. 259–277.

    Article  CAS  Google Scholar 

  8. Rodríguez-Mendoza, U.R., Speghini, A., Jaque, D., Zambelli, M., and Bettinelli, M., Optical properties of single doped Cr3+ and co-doped Cr3+–Nd3+ aluminum tantalum tellurite glasses, J. Alloys Compd., 2004, vol. 380, pp. 163–166.

    Article  Google Scholar 

  9. Ardelean, I., Muresfn, N., and Pascuuta, P., IR and Raman spectroscopic investigations of Cr2O3–TeO2–B2O3–PbO glasses, Int. J. Modern Phys. B, 2004, vol. 18, no. 1, pp. 95–101.

    Article  CAS  Google Scholar 

  10. Rasheed, F., O’Donnell, K.P., Henderson, B., and Hollis, D.B., Disorder and the optical spectroscopy of Cr3+-doped glasses: II. Glasses with high and low ligand fields, J. Phys.: Condens. Matter, 1991, vol. 3, no. 21, pp. 3825–3840.

    CAS  Google Scholar 

  11. Dimitriev, Y., Dimitrov, V., Bart, J.C.J., and Arnaudov, M., Structure of glasses of the TeO2–MoO3 system, Z. Anorg. Allg. Chem., 1981, vol. 479, no. 8, pp. 229–240.

    Article  CAS  Google Scholar 

  12. Sibirkin, A.A., Zamyatin, O.A., Torokhova, E.V., Churbanov, M.F., Suchkov, A.I., and Moiseev, A.N., Coprecipitation of tellurium and molybdenum oxides from aqueous solutions, Inorg. Mater., 2011, vol. 47, no. 11, pp. 1214–1217.

    Article  CAS  Google Scholar 

  13. Mohammad, A.K., Ahmed, M.A.K., Fjellvåg, H., and Kjekshus, A., Synthesis, structure and thermal stability of tellurium oxides and oxide sulfate formed from reactions in refluxing sulfuric acid, J. Chem. Soc., Dalton Trans., 2000, vol. 24, pp. 4542–4549.

    Google Scholar 

  14. Bart, J.C.J., Bossi, A., Perissinoto, P., Castellan, A., and Giordano, N., Some observations on the thermochemistry of telluric acid, J. Therm. Anal., 1975, vol. 8, pp. 313–327.

    Article  CAS  Google Scholar 

  15. Wienold, J., Jentoft, R.E., and Ressier, T., Structural investigation of the thermal decomposition of ammonium heptamolibdate by in situ XAFS and XRD, Eur. J. Inorg. Chem., 2003, vol. 15, pp. 1058–1071.

    Article  Google Scholar 

  16. Bart, J.C.J., Petrini, G., and Giordano, N., The binary oxide system TeO2–MoO3, Z. Anorg. Allg. Chem., 1975, vol. 412, no. 3, pp. 258–270.

    Article  CAS  Google Scholar 

  17. Mahieu, B., Apers, D.J., and Capron, P.C., Thermal decomposition of ammonium dichromate, J. Inorg. Nucl. Chem., 1971, vol. 33, pp. 2857–2866.

    Article  CAS  Google Scholar 

  18. Zaki, M.L. and Fahim, R.B., Thermal decomposition and creation of reactive solid surfaces, J. Therm. Anal., 1986, vol. 31, pp. 825–834.

    Article  CAS  Google Scholar 

  19. Fano, U., Effects of configuration interaction on intensities and phase shifts, Phys. Rev., 1961, vol. 124, no. 6, pp. 1866–1878.

    Article  CAS  Google Scholar 

  20. Durga, D.K., Reddy, P.Y., and Veeraiah, N., Optical absorption and thermoluminescence properties of ZnF2–MO–TeO2 (MO = As2O3, Bi2O3 and P2O5) glasses doped with chromium ions, J. Lumin., 2002, vol. 99, no. 1, pp. 53–60.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Zamyatin.

Additional information

Original Russian Text © O.A. Zamyatin, M.F. Churbanov, E.V. Zamyatina, S.A. Gavrin, A.A. Sibirkin, 2016, published in Neorganicheskie Materialy, 2016, Vol. 52, No. 12, pp. 1385–1388.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamyatin, O.A., Churbanov, M.F., Zamyatina, E.V. et al. Specific absorption coefficient of chromium in (TeO2)0.80(MoO3)0.20 glass. Inorg Mater 52, 1307–1310 (2016). https://doi.org/10.1134/S0020168516120165

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168516120165

Keywords

Navigation