Skip to main content
Log in

Synthesis and properties of solid electrolyte Ce0.9Gd0.1O2–δ with Co, Cu, Mn, Zn doping

  • Published:
Inorganic Materials Aims and scope

Abstract

The influence of small additions (1, 3, 5 mol %) of transition metal (Co, Cu, Mn, Zn) oxides on the properties of solid electrolyte Ce0.9Gd0.1O2–δ (GDC) have been investigated. It has been shown that the addition of dopants results in intensification of GDC sintering and reduction of the shrinkage end temperature by 300–400°C, which decreases in the sequence Zn–Mn–Co–Cu. The ultimate dopant concentration above which the further activation of GDC sintering does not occur is about 3 mol % for Co, Cu, and Mn and about 1 mol % for Zn. It has been shown that Co and Cu increase the total conductivity of GDC, while Mn and Zn decrease it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fergus, J.W., Electrolytes for solid oxide fuel cells, J. Power Sources, 2006, vol. 162, pp. 30–40.

    Article  CAS  Google Scholar 

  2. Shao, Z.P. and Haile, S.M., A high-performance cathodes for the next generation of solid oxide fuel cell, Nature, 2004, vol. 431, pp. 170–173.

    Article  CAS  Google Scholar 

  3. Wang, W.G. and Mogensen, M., High-performance lanthanum-ferrite-based cathodes for SOFC, Solid State Ionics, 2005, vol. 176, pp. 457–462.

    Article  CAS  Google Scholar 

  4. Kharton, V.V., Marques, F.M.B., and Atkinson, A., Transport properties of solid oxide electrolyte ceramics: a brief review, Solid State Ionics, 2004, vol. 174, pp. 135–149.

    Article  CAS  Google Scholar 

  5. Pikalova, E.Yu., Nikonov, A.V., Zhuravlev, V.D., et al., Effect of the synthesis technique on the physicochemical properties of Ce0.8(Sm0.75Sr0.2Ba0.05)0.2O2–δ, Inorg. Mater., 2011, vol. 47, no. 4, pp. 396–401.

    Article  CAS  Google Scholar 

  6. Torrens, R.S., Sammes, N.M., and Tompsett, G.A., Characterisation of (CeO2)0.8(GdO1.5)0.2 synthesis using various techniques, Solid State Ionics, 1998, vol. 111, pp. 9–15.

    Article  CAS  Google Scholar 

  7. Arachi, Y., Sakai, H., Yamamoto, O., Takeda, Y., and Imanishai, N., Electrical conductivity of the ZrO2–Ln2O3 (Ln = lanthanides) system, Solid State Ionics, 1999, vol. 121, pp. 133–136.

    Article  CAS  Google Scholar 

  8. Nikonov, A.V., Khrustov, V.R., Bokov, A.A., et al., Co-doping effect on the properties of scandia stabilized ZrO2, Russ. J. Electrochem., 2014, vol. 50, no. 7, pp. 625–629.

    Article  CAS  Google Scholar 

  9. Chen, P.L. and Chen, I.W., Role of defect interaction in boundary mobility and cation diffusivity of CeO2, J. Am. Ceram. Soc., 1994, vol. 77, no. 9, pp. 2289–2297.

    Article  CAS  Google Scholar 

  10. Ivanov, V.V., Khrustov, V.R., Kotov, Yu.A., et al., Conductivity and structure features of Ce1–xGdxO2–δ solid electrolytes fabricated by compaction and sintering of weakly agglomerated nanopowders, J. Eur. Ceram. Soc., 2007, vol. 27, nos. 2–3, pp. 1041–1046.

    Article  CAS  Google Scholar 

  11. Kleinlogel, C. and Gauckler, L.J., Mixed electronic–ionic conductivity of cobalt doped cerium gadolinium oxide, J. Electroceram., 2000, vol. 5, pp. 23–30.

    Article  Google Scholar 

  12. Kleinlogel, C. and Gauckler, L.J., Sintering of nanocrystalline CeO2 ceramics, Adv. Mater., 2001, vol. 13, pp. 1081–1085.

    Article  CAS  Google Scholar 

  13. Fagg, D.P., Kharton, V.V., and Frade, J.R., P-type electronic transport in Ce0.8Gd0.2O2–δ: the effect of transition metal oxide sintering aids, J. Electroceram., 2002, vol. 9, pp. 199–207.

    Article  CAS  Google Scholar 

  14. Nicholas, J.D. and De Jonghe, L.C., Prediction and evaluation of sintering aids for cerium gadolinium oxide, Solid State Ionics, 2007, vol. 178, pp. 1187–1194.

    Article  CAS  Google Scholar 

  15. Perez-Coll, D., Marrero-Lopez, D., Nunez, P., Pinol, S., and Frade, J.R., Grain boundary conductivity of Ce0.8Ln0.2O2–δ ceramics (Ln = Y, La, Gd, Sm) with and without co-doping, Electrochim. Acta, 2006, vol. 51, pp. 6463–6469.

    Article  CAS  Google Scholar 

  16. Pikalova, E.Yu., Demina, A.N., Demin, A.K., et al., Effect of doping with Co2O3, TiO2, Fe2O3, and Mn2O3 on the Properties of Ce0.8Gd0.2O2–δ, Inorg. Mater., 2007, vol. 43, pp. 735–742.

    Article  CAS  Google Scholar 

  17. Zajac, W., Suescun, L., Swierczek, K., and Molenda, J., Structural and electrical properties of grain boundaries in Ce0.85Gd0.15O1.925 solid electrolyte modified by addition of transition metal ions, J. Power Sources, 2009, vol. 194, pp. 2–9.

    Article  CAS  Google Scholar 

  18. Prasad, D.H., Park, S.Y., Ji, H., et al., Cobalt oxide codoping effect on the sinterability and electrical conductivity of nano-crystalline Gd-doped ceria, Ceram. Int., 2012, vol. 38S, pp. S497–S500.

    Article  Google Scholar 

  19. Gusev, A.I., Nanomaterialy, nanostruktury i nanotekhnologii (Nanomaterials, Nanostructures, and Nanotechnologies), Moscow: Fizmatlit, 2005.

    Google Scholar 

  20. CRC Handbook of Chemistry and Physics, David, R., Ed., Boca Raton: CRC Press/Taylor and Francis, 2009, 90th ed.

  21. Fizicheskie velichiny: Spravochnik (Physical Quantities: A Handbook), Grigor’ev, I.S., Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991.

  22. Bondi, A., The spreading of liquid metals on solid surfaces, Chem. Rev., 1953, vol. 52, pp. 417–458.

    Article  CAS  Google Scholar 

  23. Neiva, L.S., Andrade, H.M.C., and Gama, L., CuO–CeO2 catalytic systems destined for CO removal synthesized by means of the Pechini method: an evaluation of the structures obtained, J. Chem. Eng. Mater. Sci., 2011, vol. 2, pp. 69–75.

    CAS  Google Scholar 

  24. Chen, M., Hallstedt, B., Grundy, A.N., and Gauckler, L.J., CeO2–CoO phase diagram, J. Am. Ceram. Soc., 2003, vol. 86, pp. 1567–1570.

    Article  CAS  Google Scholar 

  25. Balakirev, V.F. and Golikov, Yu.V., Heterogeneous phase equilibria in rare earth–Mn–O systems in air, Inorg. Mater., 2003, vol. 39, pp. S1–S10.

    Article  CAS  Google Scholar 

  26. Zhao, L., Hyodo, J., Ishihara, T., Sasaki, K., and Bishop, S.R., XRD and Raman spectroscopy study of Mn solubility in cerium oxide, ECS Trans., 2013, vol. 57, pp. 1607–1612.

    Article  Google Scholar 

  27. Kellici, S., Gong, K., Lin, T., Brown, S., et al., Highthroughput continuous hydrothermal flow synthesis of Zn–Ce oxides: unprecedented solubility of Zn in the nanoparticle fluorite lattice, Phil. Trans., R. Soc. A, 2010, vol. 368, pp. 4331–4349.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nikonov.

Additional information

Original Russian Text © A.V. Nikonov, A.V. Spirin, V.R. Khrustov, S.N. Paranin, N.B. Pavzderin, K.A. Kuterbekov, T.N. Nurakhmetov, Y.K. Atazhan, 2016, published in Neorganicheskie Materialy, 2016, Vol. 52, No. 7, pp. 765–772.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikonov, A.V., Spirin, A.V., Khrustov, V.R. et al. Synthesis and properties of solid electrolyte Ce0.9Gd0.1O2–δ with Co, Cu, Mn, Zn doping. Inorg Mater 52, 708–715 (2016). https://doi.org/10.1134/S0020168516070116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168516070116

Keywords

Navigation