Skip to main content
Log in

Effect of stoichiometry on the size of titanium monoxide nanoparticles produced by fragmentation

  • Published:
Inorganic Materials Aims and scope

Abstract

Coarse disordered and ordered titanium monoxide powders differing in composition—substoichiometric (TiO0.92), near-stoichiometric (TiO0.97 and TiO0.99), and superstoichiometric (TiO1.23)—have been disintegrated by milling. According to X-ray diffraction and scanning electron microscopy data, milling produced nanoparticles down to 20 ± 10 nm in size. The basic structure of the nanoparticles prepared from the disordered powders was identical to the parent basic structure B1. The structure of the nanoparticles prepared from the ordered powders with the C2/m structure also remained unchanged. Using the Williamson–Hall method, we assessed the effect of the stoichiometry of the starting powder on the size of the nanoparticles and found that an ordered state of near-stoichiometric titanium monoxide ensures a factor of 3 lower lattice strain in the nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ananikov, V.P., Khemchyan, L.L., Ivanova, Yu.V., Bukhtiyarov, V.I., Sorokin, A.M., Prosvirin, I.P., Vatsadze, S.Z., Medved’ko, A.V., Nuriev, V.N., Dil’man, A.D., Levin, V.V., Koptyug, I.V., Kovtunov, K.V., Zhivonitko, V.V., Likholobov, V.A., et al., Advances in the methodology of modern selective organic synthesis: atomically accurate engineering of functionalized molecules, Usp. Khim., 2014, vol. 83, no. 10, pp. 885–985.

    Article  Google Scholar 

  2. Rempel, A.A., Sulfide-, carbide-, and oxide-based hybrid nanoparticles, Izv. Akad. Nauk, Ser. Fiz., 2013, no. 4, pp. 857–869.

    Google Scholar 

  3. Rempel, A.A., Nanotechnologies, properties, and applications of nanostructured materials, Usp. Khim., 2007, vol. 76, no. 5, pp. 474–500.

    Article  Google Scholar 

  4. Varghese, O.K., Paulose, M., LaTempa, T.J., and Craig, A., High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels, Nano Lett., 2009, vol. 9, no. 2, pp. 731–737.

    Article  CAS  Google Scholar 

  5. Hermann, J.M., Duchamp, C., Karkmaz, M., Bui Thu Hoai, Lachheb, H., Puzenat, E., and Guillard, C., Environmental green chemistry as defined by photocatalysis, J. Hazard. Mater., 2007, vol. 146, no. 3, pp. 624–629.

    Article  Google Scholar 

  6. O’Regan, B. and Gratzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991, vol. 353, pp. 737–740.

    Article  Google Scholar 

  7. Gratzel, M., Photoelectrochemical cells, Nature, 2001, vol. 414, pp. 338–344.

    Article  CAS  Google Scholar 

  8. Fujishama, A. and Honda, K., Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972, vol. 298, pp. 37–38.

    Article  Google Scholar 

  9. Akikusa, J. and Khan, S.U.M., Photoelectrolysis of water to hydrogen in p-SiC/Pt and p-SiC/n-TiO2 cells, Int. J. Hydrogen Energy, 2002, vol. 27, no. 9, pp. 863–870.

    Article  CAS  Google Scholar 

  10. Seo, S.G., Park, C-H., Kim, H-Y., Nam, W.H., Jeong, M., Choi, Y-N., Lim, Y-S., Seo, W.-S., Kim, S.-J., Lee, J-Y., and Cho, Y-S., Preparation and visible-light photocatalysis of hollow rock-salt TiO1–x Nx nanoparticles, J. Mater. Chem. A, 2013, vol. 1, pp. 3639–3644.

    Article  CAS  Google Scholar 

  11. Chen, X. and Mao, S.S., Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev., 2007, vol. 107, no. 7, pp. 2891–2959.

    Article  CAS  Google Scholar 

  12. Simon, P., Pignon, B., Miao, B., Coste-Leconte, S., Leconte, Y., Marguet, S., Jegou, P., Bouchet-Fabrie, B., Reynaud, C., and Herlin-Boime, N., N-doped titanium monoxide nanoparticles with TiO rock-salt structure, low-energy band gap, and visible light activity, Chem. Mater., 2010, vol. 22, no. 12, pp. 3704–3711.

    Article  CAS  Google Scholar 

  13. Chen, X., Liu, L., Yu, P.Y., and Mao, S.S., Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science, 2011, vol. 331, no. 6018, pp. 746–750.

    Article  CAS  Google Scholar 

  14. Schöllmann, V., Johansson, J., Andersen, K., and Haviland, D.B., Coulomb blockade effects in anodically oxidized titanium wires, J. Appl. Phys., 2000, vol. 88, no. 11, pp. 6549–6553.

    Article  Google Scholar 

  15. Valeeva, A.A., Rempel’, A.A., and Gusev, A.I., Ordering of cubic titanium monoxide into monoclinic Ti5O5, Inorg. Mater., 2001, vol. 37, no. 6, pp. 603–612.

    Article  CAS  Google Scholar 

  16. Rempel’, A.A., Rempel’, S.V., and Gusev, A.I., Quantitative assessment of homogeneity of nonstoichiometric compounds, Dokl. Phys. Chem., 1999, vol. 369, nos. 4–6, p. 321.

    Google Scholar 

  17. Rempel, A.A. and Gusev, A.I., Preparation of disordered and ordered highly nonstoichiometric carbides and evaluation of their homogeneity, Phys. Solid State, 2000, vol. 42, no. 7, pp. 1280–1286.

    Article  CAS  Google Scholar 

  18. Warren, B.E., X-ray diffraction, New York: Dover, 1990.

    Google Scholar 

  19. James, R.W., The Optical Principles of the Diffraction of X-Rays, London: Bell, 1950.

    Google Scholar 

  20. Hall, W.H., X-ray line broadening in metals, Proc. Phys. Soc. London: Sect. A, 1949, vol. 62, part 11, no. 359, pp. 741–743.

    Article  Google Scholar 

  21. Hall, W.H. and Williamson, G.K., The diffraction pattern of cold worked metals: I. The nature of extinction, Proc. Phys. Soc. London: Sect. B, 1951, vol. 64, part 11, no. 383, pp. 937–946.

    Article  Google Scholar 

  22. Valeeva, A.A., Schroettner, H., and Rempel, A.A., Disintegration of disordered stoichiometric titanium monoxide, Izv. Akad. Nauk, Ser. Khim., 2014, no. 12, pp. 2729–2732.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Valeeva.

Additional information

Original Russian Text © A.A. Valeeva, K.A. Petrovykh, H. Schroettner, A.A. Rempel, 2015, published in Neorganicheskie Materialy, 2015, Vol. 51, No. 11, pp. 1221–1227.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valeeva, A.A., Petrovykh, K.A., Schroettner, H. et al. Effect of stoichiometry on the size of titanium monoxide nanoparticles produced by fragmentation. Inorg Mater 51, 1132–1137 (2015). https://doi.org/10.1134/S0020168515110138

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168515110138

Keywords

Navigation