Skip to main content
Log in

Thermodynamic modeling of the magnesiothermic reduction of magnesium and lithium tantalates

  • Published:
Inorganic Materials Aims and scope

Abstract

This paper presents thermodynamic modeling results for the magnesium reduction of the MgTa2O6, Mg4Ta2O9, and LiTaO3 tantalates. We have calculated the temperature-dependent heat capacity of the tantalates and determined the adiabatic temperature as a function of initial reactant temperature for reduction reactions in the MgTa2O6-5Mg, Mg4Ta2O9-5Mg, 2LiTaO3-5Mg, and 2LiTaO3-6Mg systems and the equilibrium phase composition of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haas, H., Bartmann, U., Komeya, T., and Sato, N., RF Patent 2 397 843, Byull. Izobret., 2010, no. 24.

    Google Scholar 

  2. Shekhter, L.N., Lanin, L.L., Tripp, T.B., and Conlon, A.M., US Patent Application 20040163491, 2004.

  3. Shekhter, L.N., Lanin, L.L., and Conlon, A.M., US Patent Application 20060065073, 2006.

  4. Nersisyan, H.H., Lee, J.H., Lee, S.L., and Won, C.W., The role of the reaction medium in the self propagating high temperature synthesis of nanosized tantalum powder, Combust. Flame, 2003, vol. 135, no. 4, pp. 539–545.

    Article  CAS  Google Scholar 

  5. Orlov, V.M. and Kryzhanov, M.V., Magnesium-thermic reduction of tantalum oxide by self-propagating high-temperature synthesis, Russ. Metall. (Engl. Transl.), 2010, no. 5, pp. 384–388.

    Google Scholar 

  6. Kryzhanov, M.V., Orlov, V.M., and Sukhorukov, V.V., Thermodynamic modeling of magnesiothermic reduction of niobium and tantalum from pentoxides, Russ. J. Appl. Chem., 2010, vol. 83, no. 3, pp. 379–383.

    Article  CAS  Google Scholar 

  7. Orlov, V.M. and Kryzhanov, M.V., Deoxidation of the tantalum powder produced by self-propagating high-temperature synthesis, Russ. Metall. (Engl. Transl.), 2014, no. 3, pp. 191–194.

    Google Scholar 

  8. Morachevskii, A.G. and Sladkov, I.B., Termodinamicheskie raschety v metallurgii (Thermodynamic Calculations in Metallurgy), Moscow: Metallurgiya, 1993.

    Google Scholar 

  9. Termicheskie konstanty veshchestv (Thermal Constants of Substances), Glushko, V.P., Ed., Moscow: VINITI, 1981, issue 10, part 1.

    Google Scholar 

  10. Perspektivnye materialy i tekhnologii samorasprostranyayushchegosya vysokotemperaturnogo sinteza (Promising Materials and Technologies in Self-Propagating High-Temperature Synthesis), Moscow: MISiS, 2011.

  11. Orlov, V.M. and Sukhorukov, V.V., Magnesium-thermal preparation of niobium powders, Russ. Metall. (Engl. Transl.), 2010, no. 3, pp. 168–173.

    Google Scholar 

  12. Rabinovich, V.A. and Khavin, V.Ya., Kratkii khimicheskii spravochnik (Concise Handbook of Chemistry), Leningrad: Khimiya, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Orlov.

Additional information

Original Russian Text © V.M. Orlov, M.V. Kryzhanov, 2015, published in Neorganicheskie Materialy, 2015, Vol. 51, No. 6, pp. 680–684.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, V.M., Kryzhanov, M.V. Thermodynamic modeling of the magnesiothermic reduction of magnesium and lithium tantalates. Inorg Mater 51, 618–622 (2015). https://doi.org/10.1134/S0020168515060114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168515060114

Keywords

Navigation