Skip to main content
Log in

Vapor Agglomerates and Dry Spots as Precursors of the Subcooled Liquid Boiling Crisis in a Channel

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

The mechanism of the formation of large vapor agglomerates was experimentally studied in a subcooled water flow boiling in a channel at a heat flux that approaches the critical value on a smooth or structured heated surface with high-speed video. The experiments were performed with distilled, deaerated water at atmospheric pressure and liquid subcooling of Δtsub = 20–75°С in a mass flow rate range of ρw = 500–900 kg/(m2 s). Large agglomerates have been found to form as a result of the spontaneous coalescence of normal small vapor bubbles at a sufficiently high density on the heated surface. The presence of steam agglomerates induces dry spots on the heated surface, the enlargement of which in area is the direct cause of overheating of the heat-transfer surface and a boiling crisis. It has been demonstrated that structuring of the heating (boiling) surface via microarc oxidation has hardly any effect on the operating conditions upon the emergence of agglomerates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Notes

  1. For additional information, see the page of the paper in Internet.

  2. Additional materials are available on the article page on the Internet.

REFERENCES

  1. Varaksin, A.Yu., High Temp., 2020, vol. 58, no. 4, p. 716.

    Article  Google Scholar 

  2. Boyd, R.D., Fusion Technol., 1985, vol. 7, no. 1, p. 7.

    Article  Google Scholar 

  3. Zeigarnik, Yu.A., Klimov, A.I., Rotinov, A.G., and Smyslov, B.A., Therm. Eng., 1997, vol. 33, no. 3, p. 184.

    Google Scholar 

  4. Dedov, A.V., Komov, A.T., Varava, A.N., and Yagov, V.V., Int. J. Heat Mass Transfer, 2010, vol. 53, nos. 21–22, p. 4966.

    Article  Google Scholar 

  5. Hata, K., Fukuda, K., and Masuzaki, S., Exp. Therm. Fluid Sci., 2016, vol. 70, p. 255.

    Article  Google Scholar 

  6. Petukhov, B.S., Genin, L.G., Kovalev, S.A., and Solov’ev, S.L., Teploobmen v yadernykh energeticheskikh ustanovkakh (Heat Transfer in Nuclear Power Plants), Moscow: Mosk. Energ. Inst., 2003.

  7. Groeneveld, D.C., Leung, L.K.H., Kirillov, P.L., Bobkov, V.P., Smogalev, I.P., Vinogradov, V.N., Huang, X.C., and Royer, E., Nucl. Eng. Des., 1996, vol. 163, nos. 1–2, p. 1.

    Article  Google Scholar 

  8. Celata, G.P., Cumo, M., and Mariani, A., Int. J. Heat Mass Transfer, 1994, vol. 37, no. 2, p. 237.

    Article  ADS  Google Scholar 

  9. Hall, D.D. and Mudawar, I., Int. J. Heat Mass Transfer, 2000, vol. 43, no. 14, p. 2605.

    Article  Google Scholar 

  10. Vasil’ev, N.V., Zeigarnik, Yu.A., Khodakov, K.A., and Maslakova, I.V., Therm. Eng., 2019, vol. 66, no. 11, p. 798.

    Article  Google Scholar 

  11. Galloway, J.E. and Mudawar, I., Int. J. Heat Mass Transfer, 1993, vol. 36, no. 10, p. 2511.

    Article  Google Scholar 

  12. Bang, I.C., Chang, S.H., and Baek, W.P., Int. J. Heat Mass Transfer, 2004, vol. 47, p. 4349.

    Article  Google Scholar 

  13. Bloch, G., Bruder, M., and Sattelmayer, T., Int. J. Heat Mass Transfer, 2016, vol. 92, p. 403.

    Article  Google Scholar 

  14. Celata, G.P., Cumo, M., Mariani, A., and Zummo, G., Rev. Gen. Therm., 1998, vol. 37, no. 6, p. 450.

    Article  Google Scholar 

  15. Lee, C.H. and Mudawar, I., Int. J. Multiphase Flow, 1988, vol. 14, no. 6, p. 711.

    Article  Google Scholar 

  16. Gerardi, C., Buongiorno, J., Hu, L.W., and McKrell, T., Int. J. Heat Mass Transfer, 2010, vol. 53, no. 19, p. 4185.

    Article  Google Scholar 

  17. Chu, I.C., No, H.C., Song, C.H., and Euh, D.J., Nucl. Eng. Des., 2014, vol. 279, p. 189.

    Article  Google Scholar 

  18. Kim, D.E., Song, J., and Kim, H., Int. J. Heat Mass Transfer, 2016, vol. 99, p. 409.

    Article  Google Scholar 

  19. Serdyukov, V.S., Surtaev, A.S., Pavlenko, A.N., and Chernyavskii, A.N., High Temp., 2018, vol. 56, no. 4, p. 546.

    Article  Google Scholar 

  20. Yagov, V.V., Teploenergetika, 1988, vol. 3, no. 6, p. 53.

    Google Scholar 

  21. Yagov, V.V., Int. J. Heat Mass Transfer, 2014, vol. 73, p. 265.

    Article  Google Scholar 

  22. Zaitsev, D.V., Kabov, O.A., Cheverda, V.V., and Bufetov, N.S., High Temp., 2004, vol. 42, no. 3, p. 450.

    Article  Google Scholar 

  23. Pavlenko, A.N., Therm. Eng., 2020, vol. 67, no. 11, p. 853.

    Article  Google Scholar 

  24. Kim, S.H., Chu, I.C., Choi, M.H., and Euh, D.J., Int. J. Heat Mass Transfer, 2018, vol. 126, p. 1049.

    Article  Google Scholar 

  25. Boyd, R.D., Fusion Technol., 1985, vol. 7, no. 1, p. 31.

    Article  Google Scholar 

  26. Suminov, I.V., Belkin, P.N., Epel’fel’d, A.V., Lyudin, V.B., Krit, B.L., and Borisov, A.M., Plazmenno-elektroliticheskoe modifitsirovanie poverkhnosti metallov i splavov (Plasma-Electrolytic Modification of the Surface of Metals and Alloys), 2 vols., Moscow: Tekhnosfera, 2011, vol. 2.

  27. Vasil’ev, N.V., Varaksin, A.Yu., Zeigarnik, Yu.A., Khodakov, K.A., and Epel’fel’d, A.V., High Temp., 2017, vol. 55, no. 6, p. 880.

    Article  Google Scholar 

  28. Snyder, N.W. and Robin, T.T., J. Heat Transfer, 1969, vol. 91, no. 3, p. 404.

    Article  Google Scholar 

  29. Bergles, A.E., Nucl. Saf., 1977, vol. 18, no. 2, p. 154.

    Google Scholar 

  30. Celata, G.P., Cumo, M., Mariani, A., and Zummo, G., Int. J. Therm. Sci., 2000, vol. 39, nos. 9–11, p. 896.

    Article  Google Scholar 

  31. Bruder, M., Sembach, L., Lampl, D., Hirsch, C., and Sattelmayer, T., Int. J. Multiphase Flow, 2019, vol. 119, p. 108.

    Article  Google Scholar 

  32. Kim, D.E., Yu, D.I., Jerng, D.W., Kim, M.H., and Ahn, H.S., Exp. Therm. Fluid Sci., 2015, vol. 66, p. 173.

    Article  Google Scholar 

  33. Gogonin, I.I., J. Eng. Phys. Thermophys., 2009, vol. 82, no. 6, p. 1175.

    Article  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research, project no. 20-08-00188.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Vasil’ev.

Additional information

Translated by T. Krasnoshchekova

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, N.V., Zeigarnik, Y.A., Khodakov, K.A. et al. Vapor Agglomerates and Dry Spots as Precursors of the Subcooled Liquid Boiling Crisis in a Channel. High Temp 59, 325–334 (2021). https://doi.org/10.1134/S0018151X21030159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X21030159

Navigation