Skip to main content
Log in

Heat Transfer to Aqueous Glycol Solutions in Pulse-Superheated States

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

In experiments on the controlled pulsed heating of a substance, the heat transfer to aqueous glycols and propylene glycols solutions was compared in the full range of compositions. The research was conducted in the field of stable and superheated states. The used mode involved the thermostabilization of a probe heater when a specified temperature was reached. The typical heating duration was 10 ms. The general feasibility of the measurement of primary quantities in aqueous solutions superheated with respect to the liquid–vapor equilibrium temperature is shown. In test experiments with an aqueous solution of PPG-425 polypropylene glycol, the measurements were carried out with short-term superheating relative to the liquid–liquid equilibrium temperature, as well as in a certain range of compositions relative to the temperature of the diffusion spinodal of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Grigull, U. and Sandner, H., Heat Conduction, Berlin: Springer, 1984.

    Book  Google Scholar 

  2. Stankus, S.V., Khairulin, R.A., Martynets, V.G., and Bezverkhii, P.P., High Temp., 2013, vol. 51, no. 5, p. 695.

    Article  Google Scholar 

  3. Kravchun, S.N. and Lipaev, A.A., Metod periodicheskogo nagreva v eksperimental’noi teplofizike (Periodic Heating Method in Experimental Thermal Physics), Kazan: Kazan. Gos. Univ., 2006.

  4. Skripov, P.V. and Skripov, A.P., Int. J. Thermophys., 2010, vol. 31, nos. 4–5, p. 816.

    Article  ADS  Google Scholar 

  5. Spirin, G.G., J. Eng. Phys., 1978, vol. 35, p. 1051.

    Article  Google Scholar 

  6. Mulyukov, R.R. and Pavlov, P.A., Teplofiz. Vys. Temp., 1982, vol. 20, no. 1, p. 49.

    Google Scholar 

  7. Bulanov, N.V., Nikitin, E.D., and Skripov, V.P., J. Eng. Phys., 1974, vol. 26, p. 136.

    Article  Google Scholar 

  8. Gasanov, B.M., High Temp., 2018, vol. 56, no. 4, p. 565.

    Article  Google Scholar 

  9. Yagov, V.V., Zabirov, A.R., Kaban’kov, O.N., and Minko, M.V., Int. J. Heat Mass Transfer, 2017, vol. 110, p. 219.

    Article  Google Scholar 

  10. Volosnikov, D.V., Efremov, V.P., Skripov, P.V., Starostin, A.A., and Shishkin, A.V., High Temp., 2006, vol. 44, no. 3, p. 463.

  11. Chudnovskii, V.M., Maior, A.Yu., Yusupov, V.I., and Zhukov, S.A., High Temp., 2019, vol. 57, no. 4, p. 531.

    Article  Google Scholar 

  12. Reshetnikov, A.V., Mazheiko, N.A., Skripov, V.P., Skokov, V.N., and Koverda, V.P., High Temp., 2002, vol. 40, no. 5, p. 701.

    Article  Google Scholar 

  13. Vinogradov, V.E. and Pavlov, P.A., High Temp., 2016, vol. 54, no. 3, p. 338.

    Article  Google Scholar 

  14. Phylippov, L.P., Nefedov, S.N., and Kravchoon, S.N., Int. J. Thermophys., 1980, vol. 1, no. 2, p. 141.

    Article  ADS  Google Scholar 

  15. Starostin, A.A., Skripov, P.V., and Altinbaev, A.R., Int. J. Thermophys., 1999, vol. 20, no. 3, p. 953.

    Article  Google Scholar 

  16. Volosnikov, D.V., Sivtsov, A.V., Skripov, P.V., and Starostin, A.A., Instrum. Exp. Tech., 2000, vol. 43, no. 1, p. 134.

    Article  Google Scholar 

  17. Skripov, P.V., Starostin, A.A., and Volosnikov, D.V., Dokl. Phys., 2003, vol. 48, p. 228.

    Article  ADS  Google Scholar 

  18. Sun, T. and Teja, A.S.J., J. Chem. Eng. Data, 2003, vol. 48, p. 198.

    Article  Google Scholar 

  19. Skripov, V.P., and Faizullin, M.Z., Fazovye perekhody kristall–zhidkost’–par i termodinamicheskoe podobie (Crystal–Liquid-Vapor Phase Transitions and Thermodynamic Similarit) Moscow: Fizmatlit, 2003, part 4.3.

  20. Skripov, V.P. and Skripov, A.V., Sov. Phys. Usp., 1979, vol. 22, p. 389.

    Article  ADS  Google Scholar 

  21. Volosnikov, D.V., Povolotskiy, I.I., Igolnikov, A.A., and Galkin, D.A., J. Phys.: Conf. Ser., 2018, vol. 1105, 012153.

    Google Scholar 

  22. Rutin, S.B., Igolnikov, A.A., and Skripov, P.V., J. Eng. Thermophys., 2020, vol. 29, no. 1, p. 67.

    Article  Google Scholar 

  23. Rutin, S.B., Volosnikov, D.V., and Skripov, P.V., Int. J. Heat Mass Transfer, 2015, vol. 91, p. 1.

    Article  Google Scholar 

  24. Lukianov, K.V., Kotov, A.N., Starostin, A.A., and Skripov, P.V., Interfacial Phenom. Heat Transfer, 2019, vol. 7, p. 283.

    Article  Google Scholar 

  25. Afanas’ev, S.Yu., Zhukov, S.A., and Echmaev, S.B., Teplofiz. Vys. Temp., 1996, vol. 34, no. 4, p. 583.

    Google Scholar 

  26. Echmaev, S.B. and Zhukov, S.A., High Temp., 2013, vol. 51, no. 6, p. 876.

    Article  Google Scholar 

  27. Volosnikov, D.V., Ryutin, V.S., Skripov, P.V., Starostin, A.A., and Shishkin, A.V., in Metastabil’nye sostoyaniya i fazovye perekhody (Metastable States and Phase Transitions), Yekaterinburg: Ur. Otd. Ross. Akad. Nauk, 2001, no. 5, p. 59.

  28. Ralph, D.G. and Teja, A.S.J., J. Chem. Eng. Data, 1990, vol. 35, p. 117.

    Article  Google Scholar 

  29. Kozulin, I.A. and Kuznetsov, V.V., J. Phys.: Conf. Ser., 2019, vol. 1359, 012052.

    Google Scholar 

  30. Gurashkin, A.L., Starostin, A.A., Ermakov, G.V., and Skripov, P.V., J. Chem. Phys., 2012, vol. 136, 021102.

    Article  ADS  Google Scholar 

  31. Filippov, L.P. and Kravchun, S.N., Zh. Fiz. Khim., 1982, vol. 56, no. 11, p. 2753.

    Google Scholar 

  32. Firman, P. and Kahlweit, M., Colloid Polym. Sci., 1986, vol. 264, no. 11, p. 936.

    Article  Google Scholar 

  33. Igolnikov, A.A., Rutin, S.B., and Skripov, P.V., AIP Conf. Proc., 2019, vol. 2174, 020104.

    Article  Google Scholar 

  34. Ullmann, A., Poesio, P., and Brauner, N., Interfacial Phenom. Heat Transfer, 2015, vol. 3, p. 41.

    Article  Google Scholar 

Download references

Funding

The reported study was funded by RFBR, project number 19-38-90075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Volosnikov.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volosnikov, D.V., Povolotsky, I.I., Starostin, A.A. et al. Heat Transfer to Aqueous Glycol Solutions in Pulse-Superheated States. High Temp 59, 283–291 (2021). https://doi.org/10.1134/S0018151X21020152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X21020152

Navigation