Skip to main content
Log in

Stability of a Crystal at Temperatures below the Temperature of the End Point of the Melting Line: Molecular Dynamics Simulation

  • THERMOPHYSICAL PROPERTIES OF MATERIALS
  • Published:
High Temperature Aims and scope

Abstract

The conditions for the stability of an FCC crystal with respect to infinitesimal and finite changes in the parameters of state at temperatures below the temperature of the end point of the melting line are considered. Modules of simple μ and tetragonal \(\mu {\kern 1pt} '\) shear, bulk K, and unilateral \(\tilde {K}\) compression of the Lennard-Jones crystal are identified in the process of molecular dynamics simulation. It is shown that the crystal state remains stable against infinitesimal perturbations and at \(K \leqslant 0\). Here, as at K > 0, the decay of the crystal phase proceeds via spontaneous nucleation and the growth of cavitation cavities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Skripov, V.P., Metastabil’naya zhidkost’ (Metastable Liquid), Moscow: Nauka, 1972.

  2. Baidakov, V.G. and Protsenko, S.P., Phys. Rev. Lett., 2005, vol. 95, no. 1, 015701.

    Article  ADS  Google Scholar 

  3. Baidakov, V.G. and Protsenko, S.P., J. Exp. Theor. Phys., 2006, vol. 103, no. 6, p. 876.

    Article  ADS  Google Scholar 

  4. Ginzburg, V.L. and Levanyuk, A.P., Phys. Lett. A, 1974, vol. 47, no. 4, p. 345.

    Article  ADS  Google Scholar 

  5. Wang, J., Li, Ju., Yip, S., Phillot, S., and Wolf, D., Phys. Rev. B: Condens. Matter Mater. Phys., 1995, vol. 52, no. 17, p. 12627.

    Article  ADS  Google Scholar 

  6. Born, M., J. Chem. Phys., 1939, vol. 7, no. 8, p. 591.

    Article  ADS  Google Scholar 

  7. Zhurkov, S.N. and Narzullaev, B.N., Zh. Tekh. Fiz., 1953, vol. 23, no. 10, p. 1677.

    Google Scholar 

  8. Zel’dovich, Ya.B., Zh. Eksp. Tekh. Fiz., 1942, vol. 12, nos. 11–12, p. 525.

    Google Scholar 

  9. Landau, L.D. and Lifshits, E.M., Teoriya uprugosti (Theory of Elasticity), Moscow: Nauka, 1965.

  10. Turnbull, D. and Fisher, J.C., J. Chem. Phys., 1949, vol. 17, no. 1, p. 71.

    Article  ADS  Google Scholar 

  11. Plimpton, S., J. Comput. Phys., 1995, vol. 117, no. 1, p. 1.

    Article  ADS  Google Scholar 

  12. Squire, D.R., Holt, A.C., and Hoover, W.G., Phys. A (Amsterdam, Neth.), 1969, vol. 42, no. 1, p. 388.

  13. Baidakov, V.G., Galashev, A.E., and Skripov, V.P., Fiz. Tverd. Tela, 1980, vol. 22, no. 9, p. 2681.

    Google Scholar 

  14. Baidakov, V.G. and Tipeev, A.O., High Temp., 2018, vol. 56, no. 2, p. 184.

    Article  Google Scholar 

  15. Hill, R., Proc. Phys. Soc., London, Sect. A, 1952, vol. 65, no. 5, p. 349.

    Google Scholar 

  16. Baidakov, V.G., Tipeev, A.O., and Protsenko, K.R., Chem. Phys. Lett., 2017, vol. 680, p. 10.

    Article  ADS  Google Scholar 

Download references

Funding

The study was financed by the Russian Science Foundation, project no. 18-19-00276.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Baidakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baidakov, V.G., Protsenko, S.P. Stability of a Crystal at Temperatures below the Temperature of the End Point of the Melting Line: Molecular Dynamics Simulation. High Temp 59, 62–65 (2021). https://doi.org/10.1134/S0018151X20060048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20060048

Navigation