Skip to main content
Log in

Hydrogen-Oxygen Installations for the Energy Industry

  • REVIEWS
  • Published:
High Temperature Aims and scope

Abstract

The review analyzes the main types and designs of hydrogen-oxygen facilities: steam generators, superheaters, and various power air heaters. The main problems arising in the development, creation, and testing of such installations are identified. They include the cooling of the most heat-stressed units, the mixing and carburetion of the main fuel and oxidizer components, the mixing of high-temperature combustion products and ballasting components, and problems associated with the completeness of hydrogen combustion and operational safety. The main areas of these facilities application in the stationary and the energy industry are considered: maneuverability and increased efficiency in power facilities with the steam turbines, energy-storage systems with the renewable energy sources for autonomous power supply, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. The Future of Hydrogen, Report Prepared by the Int. Energy Agency for the G20 Meeting, Paris, 2019.

  2. Aslanyan, G.S. and Reutov, B.F., Therm. Eng., 2006, vol. 53, p. 316.

    Article  Google Scholar 

  3. Styrikovich, M.A., Legasov, V.A., Shpil’rain, E.E., and Malyshenko, S.P., Osnovnye problemy vodorodnoi energetiki, Predvaritel’nyi doklad Komissii AN SSSR po vodorodnoi energetike (The Main Problems of Hydrogen Energy: Preliminary Report of the Commission of the USSR Academy of Sciences on Hydrogen Energy), Moscow: Inst. Vys. Temp., Akad. Nauk SSSR, 1978.

  4. Shpil’rain, E.E. and Malyshenko, S.P., Teploenergetika, 1980, vol. 3, p. 8.

    Google Scholar 

  5. Gorlov, A.M., Int. J. Hydrogen Energy, 1981, vol. 6, no. 3, p. 243.

    Article  ADS  Google Scholar 

  6. Shpil’rain, E.E., Sarumov, Yu.A., and Popel’, O.S., At.-Vodorodnaya Energ. Tekhnol., 1982, no. 4, p. 5.

  7. Peschka, W. and Winter, C.J., Int. J. Hydrogen Energy, 1984, vol. 9, no. 4, p. 319.

    Article  ADS  Google Scholar 

  8. Shpil’rain, E.E., Malyshenko, S.P., and Kuleshov, G.G., Vvedenie v vodorodnuyu energetiku (Introduction to Hydrogen Energy), Moscow: Energoatomizdat, 1984.

  9. Peschka, W., Int. J. Hydrogen Energy, 1987, vol. 12, no. 7, p. 481.

    Article  ADS  Google Scholar 

  10. De Miranda, P.E.V., Application of hydrogen combustion for electrical and motive power generation, in Science and Engineering of Hydrogen-Based Energy Technologies, New York: Academic, 2019, p. 259.

    Google Scholar 

  11. Sternfeld, H.J. and Heinrich, P., Int. J. Hydrogen Energy, 1989, vol. 14, no. 10, p. 703.

    Article  Google Scholar 

  12. Beer, S., Haidn, O., and Willms, H., in Proc. 1st Int. Conf. on Combustion Technologies for Clean Environment, Villamoura, Portugal, 1991.

  13. Sternfeld, H.J., Acta Astronaut., 1995, vol. 37, p. 11.

    Article  ADS  Google Scholar 

  14. Sternfeld, H.J., Haidn, O.J., Potier, B., Vuillermoz, P., and Popp, M., Acta Astronaut., 1995, vol. 37, p. 487.

    Article  ADS  Google Scholar 

  15. Bebelin, I.N., Volkov, A.G., Gryaznov, A.N., and Malyshenko, S.P., Teploenergetika, 1997, no. 8, p. 48.

  16. Malyshenko, S.P., Ros. khim. zhurn. 1997, vol. 41, p. 112.

    Google Scholar 

  17. Pekhota, F.N., Rusanov, V.D., and Malyshenko, S.P., Int. J. Hydrogen Energy, 1998, vol. 23, no. 10, p. 967.

    Article  Google Scholar 

  18. Malyshenko, S.P., Gryaznov, A.N., and Filatov, N.I., Int. J. Hydrogen Energy, 2004, vol. 29, no. 6, p. 589.

    Article  Google Scholar 

  19. Sternfeld, H.J. and Paulus, M., Int. J. Hydrogen Energy, 1993, vol. 18, no. 11, p. 945.

    Article  Google Scholar 

  20. Hashimoto, T., Koyama, K., and Yamagishi, M., Int. J. Hydrogen Energy, 1998, vol. 23, no. 8, p. 713.

    Article  Google Scholar 

  21. Hijikata, T., Int. J. Hydrogen Energy, 2002, vol. 27, no. 2, p. 115.

    Article  Google Scholar 

  22. Il’ichev, V.A., Prigozhin, V.I., Savich, A.R., Leshov, A.N., and Malyshenko, S.P., Al’tern. Energ. Ekol., 2009, vol. 76, no. 8, p. 72.

    Google Scholar 

  23. Il’ichev, V.A., Prigozhin, V.I., Savich, A.R., Drozdov, I.G., and Prigozhin, A.A., Vestn. Voronezh. Gos. Tekh. Univ., 2010, vol. 6, no. 8, p. 11.

  24. Gur’yanov, A.I., Piralishvili, G.Sh., and Vereshchagin, I.M., Vestn. Samarsk. Gos. Aerokosm. Univ. im. S.P. Koroleva, 2011, vol. 27, no. 3-2, p. 137.

  25. Il’ichev, V.A., Prigozhin, V.I., Savich, A.R., Sviridov, O.P., Malyshenko, S.P., Nazarova, O.V., and Schastlivtsev, A.I., Tepl. Protsessy Tekh., 2011, vol. 11, p. 517.

    Google Scholar 

  26. Gejji, R., Sane, A., Sircar, I., Rankin, B., Meyer, S., and Gore, J., in Proc. 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2012, paper https://doi.org/10.2514/6.2012-521.

  27. Borzenko, V.I. and Schastlivtsev, A.I., High Temp., 2018, vol. 56, no. 6, p. 927.

    Article  Google Scholar 

  28. Gur’yanov, A.I. and Piralishvili, G.Sh., Aviakosm. Priborostr., 2009, no. 11, p. 17.

  29. Schastlivtsev, A., Dunikov, D., and Borzenko, V., Int. J. Hydrogen Energy, 2019, vol. 44, no. 18, p. 9450.

    Article  Google Scholar 

  30. Cicconardi, S.P., Perna, A., and Spazzafumo, G., Int. J. Hydrogen Energy, 2004, vol. 29, no. 5, p. 547.

    Article  Google Scholar 

  31. Fröhlke, K. and Haidn, O.J., Energy Convers. Manage., 1997, vol. 38, no. 10, p. 983.

    Article  Google Scholar 

  32. Dunikov, D.O., Case Stud. Therm. Eng., 2018, vol. 12, p. 736.

    Google Scholar 

  33. Schastlivtsev, A.I. and Nazarova, O.V., Therm. Eng., 2016, vol. 63, no. 2, p. 107.

    Article  Google Scholar 

  34. Malyshenko, S.P., Prigozhin, V.I., Savich, A.R., Schastlivtsev, A.I., Il’ichev, V.A., and Nazarova, O.V., High Temp., 2012, vol. 50, no. 6, p. 675.

    Article  Google Scholar 

  35. Malyshenko, C., P., Prigozhin V.I. in Innovatsionnye tekhnologii v energetike (Innovative Technologies in Energy), Budargin, O.M. and Malyshenko, S.P., Eds., Moscow: Nauka, 2012, p. 162.

    Google Scholar 

  36. Haidn, O.J., Fröhlke, K., Carl, J., and Weingartner, S., Int. J. Hydrogen Energy, 1998, vol. 23, no. 6, p. 491.

    Article  Google Scholar 

  37. Shternfeld, H.J. and Wolfmüller, K., VGB Kraftwerkstechnik, 1986, no. 66, p. 675.

  38. Bebelin, I.N., Volkov, A.G., Gryaznov, A.N., and Malyshenko, S.P., Therm. Eng., 1997, vol. 44, no. 8, p. 657.

    Google Scholar 

  39. Malyshenko, S.P., Prigozhin, V.I., and Rachuk, V.S., Sovrem. Mashinost., 2009, nos. 2–3, p. 54.

  40. Pribaturin, N.A., Fedorov, V.A., Alekseev, M.V., and Sorokin, A.L., Tepl. Protsessy Tekh., 2012, no. 6, p. 261.

  41. Kumakura, T., Kan, S., Hiraoka, K., and Ikame, M., Int. J. Hydrogen Energy, 1996, vol. 21, no. 8, p. 685.

    Article  Google Scholar 

  42. Mil’man, O.O., Fedorov, V.A., Karpushin, A.G., and Loshkareva, E.A., Al’tern. Energ. Ekol., 2013, vol. 6-1, no. 127, p. 17.

  43. Dobrovol’skii, M.V., Zhidkostnye raketnye dvigateli. Osnovy proektirovaniya (Liquid Propellant Rocket Engines: Design), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2005.

  44. GuoBiao C., Jian, D., Yang, Z., and NanJia, Y., Acta Astronaut., 2016, vol. 123, p. 246.

    Article  ADS  Google Scholar 

  45. Jin, P., Li, M., and Cai, G., Chin. J. Aeronaut., 2013, vol. 26, no. 5, p. 1164.

    Article  Google Scholar 

  46. Wang, X., Cai, G., and Huo, H., Sci. China Technol. Sci., 2012, vol. 55, no. 10, p. 2757.

    Article  ADS  Google Scholar 

  47. Lux, J., Suslov, D., and Haidn, O., Aerosp. Sci. Technol., 2008, vol. 12, no. 6, p. 469.

    Article  Google Scholar 

  48. Schastlivtsev, A., Dunikov, D., and Borzenko, V., J. Phys.: Conf. Ser., 2019, vol. 44, no. 18, p. 9450.

    Google Scholar 

  49. Zabaikin, V.A., High Temp., 2017, vol. 55, no. 4, p. 567.

    Article  Google Scholar 

  50. Popov, N.A., High Temp., 2007, vol. 45, no. 2, p. 261.

    Article  Google Scholar 

  51. Smekhov, G.D., Ibraguimova, L.B., Karkach, S.P., and Skrebkov, O.V., High Temp., 2007, vol. 45, no. 3, p. 395.

    Article  Google Scholar 

  52. Smekhov, G.D. and Shatalov, O.P., High Temp., 2016, vol. 54, no. 1, p. 89.

    Article  Google Scholar 

  53. Konnov, A.A., Combust. Flame, 2019, vol. 203, p. 14.

    Article  Google Scholar 

  54. Grosseuvres, R., Comandini, A., Bentaib, A., and Chaumeix, N., Proc. Combust. Inst., 2019, vol. 37, no. 2, p. 1537.

    Article  Google Scholar 

  55. Aminov, R.Z. and Egorov, A.N., High Temp., 2018, vol. 56, no. 5, p. 744.

    Article  Google Scholar 

  56. Wang, B., Wei, W., Ma, S., and Wei, G., Int. J. Hydrogen Energy, 2016, vol. 41, no. 42, p. 19191.

    Article  Google Scholar 

  57. Frolov, S.M., Aksenov, V.S., and Ivanov, V.S., Int. J. Hydrogen Energy, 2015, vol. 40, no. 21, p. 6970.

    Article  Google Scholar 

  58. Maas, U. and Warnatz, J., Combust. Flame, 1988, vol. 74, no. 1, p. 53.

    Article  Google Scholar 

  59. Das, L.M., Int. J. Hydrogen Energy, 1996, vol. 21, no. 8, p. 703.

    Article  Google Scholar 

  60. Li, J., Zhao, Z., Kazakov, A., and Dryer, F., Int. J. Chem. Kinet., 2004, no. 36, p. 566.

  61. Konnov, A.A., Combust. Flame, 2008, vol. 152, no. 4, p. 507.

    Article  Google Scholar 

  62. Smith, J.J., Schneider, G., Suslov, D., Oschwald, M., and Haidn, O., Aerosp. Sci. Technol., 2007, vol. 11, no. 1, p. 39.

    Article  Google Scholar 

  63. Gur’yanov, A.I., Piralishvili, G.Sh., and Vereshchagin, I.M., Vestn. Rybinsk. Gos. Aviats. Tekhnol. Akad. im. P.A. Solov’eva, 2011, vol. 3, no. 21, p. 3.

    Google Scholar 

  64. Shanthanu, S., Raghuram, S., and Raghavan, V., Int. J. Heat Mass Transfer, 2013, vol. 64, p. 536.

    Article  Google Scholar 

  65. Betelin, V.B., Shagaliev, R.M., Aksenov, S.V., Belyakov, I.M., Deryuguin, Y.N., Korchazhkin, D.A., Kozelkov, A.S., Nikitin, V.F., Sarazov, A.V., and Zelenskiy, D.K., Acta Astronaut., 2014, vol. 96, p. 53.

    Article  ADS  Google Scholar 

  66. Cutrono Rakhimov, A., Visser, D.C., Holler, T., and Komen, E.M.J., Nucl. Eng. Des., 2017, vol. 311, p. 142.

    Article  Google Scholar 

  67. Pan, J.F., Wu, D., Liu, Y.X., Zhang, H.F., Tang, A.K., and Xue, H., Appl. Energy, 2015, vol. 160, p. 802.

    Article  Google Scholar 

  68. Smirnov, N.N. and Nikitin, V.F., Int. J. Hydrogen Energy, 2014, vol. 39, no. 2, p. 1122.

    Article  Google Scholar 

  69. Sánchez, A.L. and Williams, F.A., Prog. Energy Combust. Sci., 2014, vol. 41, p. 1.

    Article  Google Scholar 

  70. Stathopoulos, P., Schimek, S., Tanneberger, T., and Paschereit, C., in Proc. ASME Turbo Expo, 2015, paper https://doi.org/10.1115/GT2015-43149.

  71. Lédé, J., Lapicque, F., and Villermaux, J., Int. J. Hydrogen Energy, 1983, vol. 8, no. 9, p. 675.

    Article  ADS  Google Scholar 

  72. Ihara, S., Int. J. Hydrogen Energy, 1978, vol. 3, no. 3, p. 287.

    Article  Google Scholar 

  73. Malyshenko, S.P. and Schastlivtsev, A.I., High Temp., 2015, vol. 53, no. 4, p. 509.

    Article  Google Scholar 

  74. Schastlivtsev, A. and Malyshenko, S., in Proc. 20th World Hydrogen Energy Conf., 2014, vol. 2, p. 900.

  75. Haidn, O., Davidenko, D., and Gökalp, I., in Proc. 7th Int. Energy Conversion Engineering Conf., 2010, paper https://doi.org/10.2514/6.2009-4569

  76. Haidn, O., Clean primary frequency control for Turkish transmission grid applying rocket combustor technology, Ankara, 2010, paper 12.1452/6.2010-2451.

  77. Klimenko, A.V., Milman, O.O., and Shifrin, B.A., Therm. Eng., 2015, vol. 62, p. 807.

    Article  Google Scholar 

  78. Shapiro, V.I., Malyshenko, S.P., and Reutov, B.F., Therm. Eng., 2011, vol. 58, no. 9, 741.

    Article  Google Scholar 

  79. Schastlivtsev, A.I. and Borzenko, V.I., J. Phys.: Conf. Ser., 2017, vol. 891, no. 1, 012213.

    Google Scholar 

  80. Stathopoulos, P., Sleem, T., and Paschereit, C., Appl. Energy, 2017, vol. 205, p. 692.

    Article  Google Scholar 

  81. Aminov, R.Z. and Egorov, A.N., Int. J. Hydrogen Energy, 2019, vol. 44, no. 21, p. 11161.

    Article  Google Scholar 

  82. Aminov, R.Z. and Yurin, V.E., Nucl. Energy Technol., 2015, vol. 1, no. 1, p. 77.

    Article  Google Scholar 

  83. Aminov, R.Z., Bairamov, A.N., and Shatskova, O.V., Therm. Eng., 2009, vol. 56, no. 11, 940.

    Article  Google Scholar 

  84. Aminov, R.Z. and Gudym, A.A., High Temp., 2019, vol. 57, no. 3, p. 348.

    Article  Google Scholar 

  85. Malyshenko, S.P. and Schastlivtsev, A.I., Therm. Eng., 2010, vol. 57, no. 11, p. 931.

    Article  Google Scholar 

  86. Egorov, A.N., Energobezop. Energosberezhenie, 2019, no. 1, p. 35.

  87. Stewart, D., Saur, G., and Penev, M., in Book Lifecycle Cost Analysis of Hydrogen Versus other Technologies for Electrical Energy Storage, Golden, CO: Natl. Renewable Energy Lab., 2009, p. 59.

    Google Scholar 

  88. Alabbadi, S.A., Energy Proc., 2012, vol. 29, p. 12.

    Article  Google Scholar 

  89. Gray, E.M., Webb, C.J., Andrews, J., Shabani, B., Tsai, P.J., and Chan, S.L.I., Int. J. Hydrogen Energy, 2011, vol. 36, no. 1, p. 654.

    Article  Google Scholar 

  90. Meurer, C., Barthels, H., Brocke, W.A., Emonts, B., and Groehn, H.G., Sol. Energy, 1999, vol. 67, nos. 1–3, p. 131.

    Article  ADS  Google Scholar 

  91. Sugisita, H., Mori, H., and Uematsu, K., Int. J. Hydrogen Energy, 1998, vol. 23, no. 8, p. 705.

    Article  Google Scholar 

  92. Kato, S. and Nomura, N., Energy Convers. Manage., 1997, vol. 38, no. 10, p. 1319.

    Article  Google Scholar 

Download references

Funding

The work was supported by the Ministry for Education and Science (Russia) within the framework of agreement no. 05.607.21.0313 (unique identifier RFMEFI60719X0313).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Schastlivtsev.

Additional information

Translated by I. Dikhter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schastlivtsev, A.I., Dunikov, D.O., Borzenko, V.I. et al. Hydrogen-Oxygen Installations for the Energy Industry. High Temp 58, 733–743 (2020). https://doi.org/10.1134/S0018151X20050077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20050077

Navigation