Skip to main content
Log in

Chemical Composition of Bio-oil Obtained via Hydrothermal Liquefaction of Arthrospira platensis Biomass

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

The chemical composition of bio-oil obtained from Arthrospira platensis biomass via hydrothermal liquefaction at 240–330°C has been studied with an elemental analysis and Fourier transform ultrahigh resolution mass spectrometry with ionic cyclotron resonance. An increase in temperature leads to an increased bio-oil yield, decreased oxygen, and an increase in the amount of carbon and nitrogen. The weighted Kendrick mass defect histogram showed for the first time that the main nitrogen-containing and oxygen-containing compounds are ON, O2N3, O3N2, ON2, N, and N2. The character of the change in their relative amount in bio-oil with a temperature change is also revealed. The Venn diagram shows the intersection of the sets of molecular formulas found in bio-oil samples obtained at different temperatures. The results may be used to optimize the hydrothermal liquefaction of microalgae and their subsequent processing into motor fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Raslavičius, L., Semenov, V.G., Chernova, N.I., Keršys, A., and Kopeyka, A.K., Renewable Sustainable Energy Rev., 2014, vol. 40, p. 133.

    Article  Google Scholar 

  2. Chernova, N.I., Kiseleva, S.V., and Popel’, O.S., Therm. Eng., 2014, vol. 61, no. 6, p. 399.

    Article  ADS  Google Scholar 

  3. Salam, K.A., Velasquez-Orta, S.B., and Harvey, A.P., Renewable Sustainable Energy Rev., 2016, vol. 65, p. 1179.

    Article  Google Scholar 

  4. López Barreiro, D., Zamalloa, C., Boon, N., Vyverman, W., Ronsse, F., Brilman, W., and Prins, W., Bioresour. Technol., 2013, vol. 146, p. 463.

    Article  Google Scholar 

  5. Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., and Tredici, M.R., Biotechnol. Bioeng., 2009, vol. 102, no. 1, p. 100.

    Article  Google Scholar 

  6. Bersh, A.V., Lisitsyn, A.V., Sorokovikov, A.I., Vlaskin, M.S., Mazalov, Yu.A., and Shkol’nikov, E.I., High Temp., 2010, vol. 48, no. 6, p. 794.

    Article  Google Scholar 

  7. Vlaskin, M.S., Grigorenko, A.V., Zhuk, A.Z., Lisi-tsyn, A.V., Sheindlin, A.E., and Shkol’nikov, E.I., High Temp., 2016, vol. 54, no. 3, p. 322.

    Article  Google Scholar 

  8. Lisitsyn, A.V., Dombrovsky, L.A., Mendeleyev, V.Y., Grigorenko, A.V., Vlaskin, M.S., and Zhuk, A.Z., Infrared Phys. Technol., 2016, vol. 77, p. 162.

    Article  ADS  Google Scholar 

  9. Vlaskin, M.S., Chernova, N.I., Kiseleva, S.V., Popel’, O.S., and Zhuk, A.Z., hydrothermal liquefaction of microalgae to produce biofuels: state of the art and future prospects, Therm. Eng., 2017, vol. 64, no. 9, p. 627.

    Article  ADS  Google Scholar 

  10. Chernova, N.I., Kiseleva, S.V., Vlaskin, M.S., and Rafikova, Y.Y., Renewable energy technologies: enlargement of biofuels list and co-products from microalgae, MATEC Web Conf., 2017, vol. 112, paper no. 10010.

  11. Elliott, D.C., Algal Res., 2016, vol. 13, p. 255.

    Article  Google Scholar 

  12. Valdez, P.J., Nelson, M.C., Wang, H.Y., Lin, X.N., and Savage, P.E., Biomass Bioenergy, 2012, vol. 46, p. 317.

    Article  Google Scholar 

  13. Jena, U., Das, K.C., and Kastner, J.R., Bioresour. Technol., 2011, vol. 102, no. 10, p. 6221.

    Article  Google Scholar 

  14. Jazrawi, C., Biller, P., He, Y., Montoya, A., Ross, A.B., Maschmeyer, T., and Haynes, B.S., Algal Res., 2015, vol. 8, p. 15.

    Article  Google Scholar 

  15. Jena, U. and Das, K.C., Energy Fuels, 2011, vol. 25, no. 11, p. 5472.

    Article  Google Scholar 

  16. Toor, S.S., Reddy, H., Deng, S., Hoffmann, J., Spangsmark, D., Madsen, L.B., Holm-Nielsen, J.B., et al., Bioresour. Technol., 2013, vol. 131, p. 413.

    Article  Google Scholar 

  17. Gai, C., Zhang, Y., Chen, W.-T., Zhang, P., and Dong, Y., Energy Convers. Manage., 2015, vol. 96, p. 330.

    Article  Google Scholar 

  18. Kostyukevich, Y., Kononikhin, A., Popov, I., and Nikolaev, E., J. Mass Spectrom., 2015, vol. 50, no. 10, p. 1150.

    Article  ADS  Google Scholar 

  19. Zherebker, A., Kostyukevich, Y., Kononikhin, A., Roznyatovsky, V.A., Popov, I., Grishin, Y.K., Perminova, I.V., et al., Analyst, 2016, vol. 141, no. 8, p. 2426.

    Article  ADS  Google Scholar 

  20. Zherebker, A., Kostyukevich, Y., Kononikhin, A., Kharybin, O., Konstantinov, A.I., Zaitsev, K.V., Nikolaev, E., et al., Anal. Bioanal. Chem., 2017, vol. 409, no. 9, p. 2477.

    Article  Google Scholar 

  21. Sudasinghe, N., Dungan, B., Lammers, P., Albrecht, K., Elliott, D., Hallen, R., and Schaub, T., Fuel, 2014, vol. 119, p. 47.

    Article  Google Scholar 

  22. Kostyukevich, Y., Vlaskin, M., Vladimirov, G., Zherebker, A., Kononikhin, A., Popov, I., and Nikolaev, E., Eur. J. Mass Spectrom., 2017, vol. 23, no. 2, p. 83.

    Article  Google Scholar 

  23. Chernova, N.I. and Kiseleva, S.V., Int. J. Hydrogen Energy, 2017, vol. 42, no. 5, p. 2861.

    Article  Google Scholar 

  24. Korobkova, T.P., Chernova, N.I., Kiseleva, S.V., and Zaitsev, S.I., RF Patent 2322489, 2008.

  25. Zarrouk, C., Contribution to the study of cyanophyceae: Influence of various physical and chemical factors on the growth and photosynthesis of Spirulina maxima (Setch and Gardner) Geitler, Ph.D. Thesis, Paris: Univ. Paris, 1966.

  26. Madsen, R.B., Jensen, M.M., and Glasius, M., Sustainable Energy Fuels, 2017, vol. 1, no. 10, p. 2110.

    Google Scholar 

  27. Kostyukevich, Y., Solovyov, S., Kononikhin, A., Popov, I., and Nikolaev, E., J. Mass Spectrom., 2016, vol. 51, no. 6, p. 430.

    Article  ADS  Google Scholar 

  28. Kostyukevich, Y., Zherebker, A., Kononikhin, A., Popov, I., Perminova, I., and Nikolaev, E., Int. J. Mass Spectrom., 2016, vol. 404, p. 29.

    Article  Google Scholar 

  29. Kostyukevich, Y., Borisova, L., Kononikhin, A., Popov, I., Kukaev, E., and Nikolaev, E., Eur. J. Mass Spectrom., 2016, vol. 22, no. 6, p. 313.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the Russian Foundation for Basic Research (project no. 17-19-01617).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. S. Vlaskin or A. V. Grigorenko.

Additional information

Translated by A. Tulyabaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlaskin, M.S., Kostyukevich, Y.I., Vladimirov, G.N. et al. Chemical Composition of Bio-oil Obtained via Hydrothermal Liquefaction of Arthrospira platensis Biomass. High Temp 56, 915–920 (2018). https://doi.org/10.1134/S0018151X18060263

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X18060263

Navigation