Skip to main content
Log in

Thermal Expansion of Micro- and Nanocrystalline HfB2

  • Thermophysical Properties of Materials
  • Published:
High Temperature Aims and scope

Abstract

Hafnium diboride nano- and microcrystals are studied by high-temperature X-ray diffraction in the temperature range of 300–1500 K. HfB2 nanocrystals are found to have a greater thermal expansion coefficient than HfB2 microcrystals. The thermal expansion of HfB2 is found to be anisotropic with respect to the unit cell axes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simonenko, E.P., Sevast’yanov, D.V., Simonenko, N.P., Sevast’yanov, V.G., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2013, vol. 58, no. 14, p. 1669.

    Article  Google Scholar 

  2. Upadhya, K., Yang, J.M., and Hoffman, W.P., Am. Ceram. Soc. Bull., 1997, vol. 76, p. 51.

    Google Scholar 

  3. Fahrenholtz, W.G., Hilmas, G.E., Talmy, I.G., and Zaykoski, J.A., J. Am. Ceram. Soc., 2007, vol. 90, p. 1347.

    Article  Google Scholar 

  4. Opeka, M.M., Talmy, I.G., and Zaykoski, J.A., J. Mater. Sci., 2004, vol. 39, p. 5887.

    Article  ADS  Google Scholar 

  5. Monteverde, F., Bellos, A., and Scatteia, L., Mater. Sci. Eng., A, 2008, vol. 485, p. 415.

    Article  Google Scholar 

  6. Savinoa, R., Stefano Fumo, M.D., Silvestron, L., and Sciti, D., J. Eur. Ceram. Soc., 2008, vol. 28, p. 1899.

    Article  Google Scholar 

  7. Vajeeston, P., Ravindran, P., Ravi, C., and Asokamani, R., Phys. Rev. B: Condens. Matter Mater. Phys., 2001, vol. 63, 04115.

  8. Cutle, R.A., Engineering properties of borides, in Ceramics and Glasses: Engineered Materials Handbook, vol. 4, Schneider, S.J., Ed., Ohio: ASM Int., 1991, p. 787.

    Google Scholar 

  9. Chase, M.W., NIST-JANAF Thermochemical Tables, New York: Am. Chem. Soc., Am. Inst. Phys., 1998.

    Google Scholar 

  10. Wuchina, E., Opeka, M., Causey, S., Buesking, S., Spain, J., Cull, A., Routbort, J., and Guitierrez-Mora, F., J. Mater. Sci., 2004, vol. 39, p. 5939.

    Article  ADS  Google Scholar 

  11. Andrievskii, R.A., Russ. Chem Rev., 2015, vol. 84, p. 540.

    Article  ADS  Google Scholar 

  12. Andrievski, R.A. and Khatchoyan, A.V., Nanomaterials in Extreme Environments: Fundamentals and Applications, Heidelberg: Springer, 2016.

    Book  Google Scholar 

  13. Carenco, S., Portehault, D., Boissière, C., Mézailles, N., and Sanchez, C., Chem. Rev., 2013, vol. 113, p. 7981.

    Article  Google Scholar 

  14. Andrievskii, R.A. and Spivak, I.I., Prochnost’ tugoplavkikh soedinenii i materialov na ikh osnove. Spravochnik (Strength of Refractory Compounds and Materials Based on Them: A Handbook), Chelyabinsk: Metallurgiya, 1989.

    Google Scholar 

  15. Serebryakova, T.I., Neronov, V.A., and Peshev, P.D., Vysokotemperaturnye boridy (High-Temperature Borides), Moscow: Metallurgiya, 1991.

    Google Scholar 

  16. Basu, B. and Balani, K., Advanced Structural Ceramics, Hoboken: Wiley, 2011.

    Book  Google Scholar 

  17. Nakamory, F., Ohishi, Y., Muta, H., Kurosaki, K., Fukumoto, K.-I., and Yamanaka, Sh., J. Nucl. Mater., 2015. vol. 467, p. 612.

    Article  ADS  Google Scholar 

  18. Loehman, R., Corral, E., Dumm, H.-P., Kotula, P., and Tandon, R., Ultra-High Temperature Ceramics for Hypersonic Vehicle Applications, Albuquerque: Sandia Report, 2006, p. 46.

    Google Scholar 

  19. Pilladi, T.R., Panneerselvam, G., Anthonysamy, S., and Ganesam, V., Ceram. Int., 2012, vol. 38, p. 3723.

    Article  Google Scholar 

  20. Kuru, Y., Wohlschlögel, M., Welzel, U., and Mittemeijer, E.J., Appl. Phys. Lett., 2007, vol. 90, 243113.

  21. Sadovnikov, V.I. and Gusev, A.I., Phys. Solid State, 2014. vol. 56, no. 11, p. 2353.

    Article  ADS  Google Scholar 

  22. Gusev, A.I., Sadovnikov, V.I., Chukin, A.V., and Rempel, A.A., Phys. Solid State, 2016, vol. 58, no. 2, p. 251.

    Article  ADS  Google Scholar 

  23. Kravchenko, S.E., Burlakova, A.G., Shulga, Yu. M., Korobov, I.I., Domashnev, I.A., Dremova, N.N., Kalinnikov, G.V., Shilkin, S.P., and Andrievskii, R.A., Russ. J. Gen. Chem., 2015, vol. 85, no. 5, p. 1019.

    Article  Google Scholar 

  24. Pease, R.S., Acta Crystallogr., 1952, vol. 5, p. 356.

    Article  Google Scholar 

  25. Langreiter, T. and Kahlenberg, V., Crystals, 2015, vol. 5, p. 143.

    Article  Google Scholar 

  26. Batsanov, S.S., Strukturnaya khimiya. Fakty i zavisimosti (Structural Chemistry: Facts and Figures), Moscow: Dialog-MGU, 2000.

    Google Scholar 

  27. Konovalikhin, S.V. and Ponomarev, V.I., Crystallogr. Rep., 2015, vol. 60, no. 5, p. 636.

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 17-03-00040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Kovalev.

Additional information

Russian Text © The Author(s), 2019, published in Teplofizika Vysokikh Temperatur, 2019, Vol. 57, No. 1, pp. 37–41.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, D.Y., Shilkin, S.P., Konovalikhin, S.V. et al. Thermal Expansion of Micro- and Nanocrystalline HfB2. High Temp 57, 32–36 (2019). https://doi.org/10.1134/S0018151X18050164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X18050164

Navigation