Skip to main content
Log in

Caloric Properties of Hydrocarbons in Liquid, Gaseous, and Supercritical States: n-Heptane

  • Thermophysical Properties of Materials
  • Published:
High Temperature Aims and scope

Abstract

Detailed experimental data are presented on the n-heptane isobaric heat capacity obtained by a modernized adiabatic running calorimeter with the calorimetric measurement of the flow rate in the liquid, gaseous, and supercritical domains, within a temperature range of 300–620 K and a pressure range of 0.5–60 MPa. A thorough consideration of errors made it possible to obtain an error of 0.4% within a wide range of the state parameters. According to the experimental data on the heat capacity, using the known thermodynamics relations, the tables of the n-heptane enthalpy, entropy, and Gibbs energy were calculated (estimated against the accuracy) on the basis of the reliable state equations and the available literature data. The obtained results can be applied directly in the design of chemical processes and the processes in the bedded systems of the hydrocarbon deposits and for development and testing of the equations of state and the methods of the thermodynamic similarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bushman, A.V., Lomonosov, I.V., Fortov, V.E., and Khishchenko, K.V., Khim. Fiz., 1994, vol. 13, no. 1, p. 64.

    Google Scholar 

  2. Bushman, A.V., Lomonosov, I.V., Fortov, V.E., and Khishchenko, K.V., Khim. Fiz., 1994, vol. 13, no. 5, p. 97.

    Google Scholar 

  3. Rasulov, S.M., Orakova, S.M., and Isaev, I.A., High Temp., 2016, vol. 54, no. 2, p. 210.

    Article  Google Scholar 

  4. Nigmatulin, R.I. and Bolotnova, R.Kh., High Temp., 2017, vol. 55, no. 2, p. 199.

    Article  Google Scholar 

  5. Burtsev, S.A., Karpenko, A.P., and Leont’ev, A.I., High Temp., 2016, vol. 54, no. 4, p. 573.

    Article  Google Scholar 

  6. Parks, G.S., Huffman, H.M., and Thomas, S.B., J. Am. Chem. Soc., 1930, vol. 52, no. 3, p. 1032.

    Article  Google Scholar 

  7. Huffman, H.M., Parks, G.S., and Barmore, M., J. Am. Chem. Soc., 1931, vol. 53, no. 10, p. 3876.

    Article  Google Scholar 

  8. Richards, W.T. and Wallace, J.H., J. Am. Chem. Soc., 1932, vol. 54, no. 7, p. 2705.

    Article  Google Scholar 

  9. Pitzer, K.S., J. Am. Chem. Soc., 1940, vol. 62, p. 1224.

    Article  Google Scholar 

  10. Fiziko-khimicheskie svoistva individual’nykh uglevodorodov (Physical and Chemical Properties of Individual Hydrocarbons), Tilicheev, M.D., Ed., Moscow: Gostoptekhizdat, 1954–1957, nos. 1–6.

    Google Scholar 

  11. Waddington, G., Todd, S.S., and Huffman, H.M., J. Am. Chem. Soc., 1947, vol. 69, no. 1, p. 22.

    Article  Google Scholar 

  12. Ginnings, D.C. and Furukava, G.T., J. Am. Chem. Soc., 1953, vol. 75, no. 3, p. 522.

    Article  Google Scholar 

  13. Osborn, N.S. and Ginnings, P.S., J. Res. Natl. Bur. Stand. (U. S. A.), 1947, vol. 39, no. 5, p. 453.

    Article  Google Scholar 

  14. Hoffman, H.M., Gross, M.E., Scott, D.W., and McCullough, J.P., J. Phys. Chem., 1961, vol. 65, no. 3, p. 495.

    Article  Google Scholar 

  15. Mustafaev, M.R., Cand. Sci. (Eng.) Dissertation, Baku: Azerbaijan Polytech. Inst., 1979.

    Google Scholar 

  16. Mustafaev, R.A., Teplofizicheskie svoistva uglevodorodov pri vysokikh parametrakh sostoyaniya (Thermophysical Properties of Hydrocarbons at High State Parameters), Moscow: Energiya, 1980.

    Google Scholar 

  17. Mamedov, A.M., Teplofiz. Svoistva Veshchestv Mater., 1973, no. 12, p. 106.

    Google Scholar 

  18. Grigor’ev, B.A., Rastorguev, Yu.L., and Yanin, G.S., Izv. Vyssh. Uchebn. Zaved., Neft’ Gaz., 1975, no. 10, p. 63.

    Google Scholar 

  19. Kuznetsov, M.A. and Grigor’ev, E.B., GSSSD (State Standard Reference Data Service) Method for Measuring the Isobaric Heat Capacity of Hydrocarbons and their Mixtures in Liquid, Gas, and Supercritical States at Temperatures 300–650 K and Pressures up to 60 MPa, Moscow: Standartinform, 2014.

    Google Scholar 

  20. Kuznetsov, M.A. and Lazarev, S.I., Meas. Tech., 2005, vol. 48, no. 8, p. 798.

    Article  Google Scholar 

  21. Gerasimov, A.A., Cand. Sci. (Eng.) Dissertation, Groznyi: Groznyi Oil Inst., 1980.

    Google Scholar 

  22. Amirkhanov, Kh.I., Alibekov, B.G., Vikhrov, D.I., and Mirskaya, V.A., Izokhornaya teploemkost’ i drugie kaloricheskie svoistva uglevodorodov metanovogo ryada (Isochoric Heat Capacity and Other Caloric Properties of Methane Hydrocarbons), Makhachkala: Dagestan. Knizhn. Izd., 1981.

    Google Scholar 

  23. Messerly, J.F., Guthrie, G.B., Todd, S.S., and Finke, H.L., J. Chem. Eng. Data, 1967, vol. 12, no. 3, p. 356.

    Google Scholar 

  24. Lee, S.I. and Kesler, M.G., AIChE J., 1975, vol. 21, no. 3, p. 510.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kuznetsov.

Additional information

Original Russian Text © M.A. Kuznetsov, E.B. Grigoriev, S.I. Lazarev, 2018, published in Teplofizika Vysokikh Temperatur, 2018, Vol. 56, No. 4, pp. 514–525.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, M.A., Grigoriev, E.B. & Lazarev, S.I. Caloric Properties of Hydrocarbons in Liquid, Gaseous, and Supercritical States: n-Heptane. High Temp 56, 502–513 (2018). https://doi.org/10.1134/S0018151X18040119

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X18040119

Navigation