Skip to main content
Log in

Convective Heat Transfer at an Annular Jet Impingement on a Flat Blockage

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

The experimental results on heat transfer of an annular impinging jet have been. The Reynolds numbers Re = (1.2–3.6) × 104, the distance S from the nozzle to a blockage, S/d0 = 2, 4, 6, and the circular slit height d2/d0 = 0.51 and 0.71, where d0 and d2 are the internal and external nozzle diameters, have been varied. It is shown that at the same air mass flow rate, replacement of a round nozzle with an annular one results in heat-transfer intensification (up to 70% at the stagnation point). The maximum heat transfer gain occurs at a small nozzle–wall distance (S/d0 = 2). The heat-transfer increase is accompanied by an increase in the thermal pulsation intensity. The degree of intensification of the heat exchange depends on the height of the circular slit and the nozzle–wall distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garimella, S.V. and Nenaydykh, B., Int. J. Heat Mass Transfer 1996, vol. 39, p. 2915.

    Article  Google Scholar 

  2. Colucci, D.W. and Viskanta, R., Exp. Thermal Fluid Sci. 1996, vol. 13, p. 71.

    Article  Google Scholar 

  3. Lee, J. and Lee, S.-J., Int. J. Heat Mass Transfer 2000, vol. 43, p. 3497.

    Article  Google Scholar 

  4. Mazur, A.I. and Yushina, L.E., Prom. Teplotekh. 1980, vol. 2, no. 2, p. 35.

    Google Scholar 

  5. Travnicek, Z. and Tesar, V., Exp. Thermal Fluid Sci. 2013, vol. 44, p. 565.

    Article  Google Scholar 

  6. Travnicek, Z., Peszynski, K., Hosek, J., and Wawrzyniak, S., Int. J. Heat Mass Transfer 2003, vol. 46, p. 1265.

    Article  Google Scholar 

  7. Maki, H. and Yabe, A., Exp. Heat Transfer 1989, vol. 2, p. 1.

    Article  ADS  Google Scholar 

  8. Chattopadhyay, H., Int. J. Heat Mass Transfer, 2004, vol. 47, nos. 14–16, p. 3197.

    Article  Google Scholar 

  9. Song, J. and Jo, M.C., J. Heat Transfer, 2004, vol. 126, p. 554.

    Article  Google Scholar 

  10. Ichimiya, K., Int. J. Heat Mass Transfer, 2003, vol. 39, p. 545.

    Article  ADS  Google Scholar 

  11. Zhen, H.S., Leung, C.W., and Cheung, C.S., Appl. Therm. Eng. 2012, vol. 36, p. 386.

    Article  Google Scholar 

  12. Huang, X.Q., Leung, C.W., Chan, C.K., and Probert, S.D., Appl. Energy 2006, vol. 83, p. 401.

    Article  Google Scholar 

  13. Yang, H.Q., Kim, T., Lu, T.J., and Ichimiya, K., Int. J. Heat Mass Transfer 2010, vol. 53, p. 4092.

    Article  Google Scholar 

  14. Hallqvist, T. and Fuchs, L., AIAA Pap. 2005-5153, 2005.

    Google Scholar 

  15. Yang, H.Q., Kim, T.B., and Lu, T.J., Sci. China: Technol. Sci. 2011, vol. 54, no. 3, p. 749.

    Article  Google Scholar 

  16. Celik, N. and Eren, H., Exp. Thermal Fluid Sci. 2009, vol. 33, p. 715.

    Article  Google Scholar 

  17. Durao, J.H. and Whitelaw, J.H., J. Fluids Eng., 1973, vol. 95, p. 467.

    Article  Google Scholar 

  18. Terekhov, V.I. and Mshvidobadze, Yu.M., Therm. Sci. 2016, vol. 20, Suppl. no. 1, p. S35. doi 10.2298/TSCI150819137T

  19. Dyban, E.P. and Mazur, A.I., Konvektivnyi teploobmen pri struinom obtekanii tel (Convective Heat Transfer in Jet Flow around Bodies), Kiev: Naukova dumka, 1982.

    Google Scholar 

  20. Gupta, A.L., Lilley, D.G., and Syred, N., Swirl Flows, Wells: Abacus, 1984.

    Google Scholar 

  21. Maki, H., Aida, E., and Akimoto, K., JSME Int. J., Ser. B 1980, vol. 46, p. 1959.

    Google Scholar 

  22. Kalinina, S.V., Terekhov, V.I., and Sharov, K.A., Fluid Dyn. 2015, vol. 50, no. 5, p. 665.

    Article  Google Scholar 

  23. Sapozhnikov, S.Z., Mityakov, V.Yu., and Mityakov, A.V., Osnovy gradientnoi teplometrii (Fundamentals of Gradient Thermometry), St. Petersburg: St. Peterburgsk. Politekh. Univ. 2012.

    Google Scholar 

  24. Lemanov, V.V. and Terekhov, V.I., High Temp. 2016, vol. 54, no. 3, p. 454.

    Article  Google Scholar 

  25. Pakhomov, M.A. and Terekhov, V.I., High Temp. 2016, vol. 54, no. 1, p. 150.

    Article  Google Scholar 

  26. Brdlik, P.M. and Savin, V.K., J. Eng. Phys., 1966, vol. 10, no. 4, p. 241.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Terekhov.

Additional information

Original Russian Text © V.I. Terekhov, S.V. Kalinina, K.A. Sharov, 2018, published in Teplofizika Vysokikh Temperatur, 2018, Vol. 56, No. 2, pp. 229–234.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terekhov, V.I., Kalinina, S.V. & Sharov, K.A. Convective Heat Transfer at an Annular Jet Impingement on a Flat Blockage. High Temp 56, 217–222 (2018). https://doi.org/10.1134/S0018151X18010194

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X18010194

Navigation