Skip to main content
Log in

Measurement of Non-Stationary Gas Flow Parameters Using Diode Laser Absorption Spectroscopy at High Temperatures and Pressures

  • New Energetics
  • Published:
High Temperature Aims and scope

Abstract

The layout of an absorption spectrometer with diode lasers for contactless measurement of the temperature and water-vapor concentration in gas flows with mixture pressures of up to 3 atm and temperatures of 300–2000 K has been designed. The technique is based on the rapid tuning of the radiation wavelength of two lasers, the registration of the absorption lines of water molecules that are located in the tuning range, and the fitting of the experimental absorption spectra by theoretical ones that have been simulated using spectroscopic databases. The original components of the spectrometer and different algorithms of the processing of experimental spectra are described. The performance of the spectrometer and processing methods were tested in the laboratory with a cuvette at a pressure of 1 atm and temperatures of 300–1500 K. The different processing algorithms give a reasonable coincidence of data on hot zone parameters that were obtained by the method of diode laser absorption spectrometry, and the temperature that was measured using standard sensors. The designed layout of the spectrometer passed the first tests on the T-131 experimental stand at the TsAGI (Central Aerohydrodynamics Institute).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, M.G., Meas. Sci. Technol., 1998, vol. 9, p. 545.

    Article  ADS  Google Scholar 

  2. Hanson, R.K., Proc. Combust. Inst., 2011, vol. 33, p. 1.

    Article  Google Scholar 

  3. Bolshov, M.A., Kuritsyn, Y.A., and Romanovskii, Y.V., Spectrochim. Acta, Part B, 2015, vol. 106, p. 45.

    Article  ADS  Google Scholar 

  4. Schulz, C., Dreizler, A., Ebert, V., and Wolfrum, J., Combustion diagnostics, in: Springer Handbook of Experimental Fluid Mechanics, Berlin–Heidelberg: Springer, 2007, p. 1241.

    Book  Google Scholar 

  5. Wang, Z.P., Li, F., Gu, H.B., Yu, X.L., and Zhang, X.Y., Aerosp. Sci. Technol., 2015, vol. 42, p. 169.

    Article  Google Scholar 

  6. Sappey, A., Sutherland, L., Owenby, D., van Houdt, P., Hannam, J., Zhao, Q., McCormick, P., Masterson, P., Estes, M., Williams, S., and Barhorst, T., Flight-ready TDLAS combustion sensor for hypersonics, AIAA Pap. 2009-7234, 2009.

    Book  Google Scholar 

  7. Ma, L., Li, X., Sanders, S.T., Caswell, A.W., Roy, S., Plemmons, D.H., et al., Opt. Express, 2013, vol. 21, p. 1152.

    Article  ADS  Google Scholar 

  8. Bolshov, M.A., Kuritsyn, Yu.A., Liger, V.V., Mironenko, V.R., Leonov, S.B., and Yarantsev, D.A., Quantum Electron., 2009, vol. 39, no. 9, p. 869.

    Article  ADS  Google Scholar 

  9. Bol’shov, M.A., Kuritsyn, Yu.A., Leonov, S.B., Liger, V.V., Mironenko, V.R., Savelkin, K.V., and Yarantsev, D.A., Teplofiz. Vys. Temp., 2010, vol. 48, Suppl. issue, p. 9.

    Google Scholar 

  10. Bolshov, M.A., Kuritsyn, Y.A., Liger, V.V., Mironenko, V.R., Leonov, S.B., and Yarantsev, D.A., Appl. Phys. B, 2010, vol. 100, p. 397.

    Article  ADS  Google Scholar 

  11. Rothman, L.S., Gordon, I.E., Babikov, Y., Barbe, A., Benner, D.C., Bernath, P.F., et al., J. Quant. Spectrosc. Radiat. Transfer, 2013, vol. 130, p. 4.

    Article  ADS  Google Scholar 

  12. Rothman, L.S., Gordon, I.E., Barber, R.J., Dothe, H., Gamache, R.R., Goldman, A., et al., J. Quant. Spectrosc. Radiat. Transfer, 2010, vol. 111, p. 2139.

    Article  ADS  Google Scholar 

  13. Jacquinet-Husson, N., Crepeau, L., Armante, R., Boutammine, C., Chédin, A., Scott, N.A., et al., J. Quant. Spectrosc. Radiat. Transfer, 2011, vol. 112, p. 2395.

    Article  ADS  Google Scholar 

  14. Bolshov, M.A., Kuritsyn, Yu.A., Liger, V.V., and Mironenko, V.R., Opt. Spectrosc., 2011, vol. 110, no. 6, p. 848.

    Article  ADS  Google Scholar 

  15. NI USB-6259. http://sine.ni.com/nips/cds/view/p/lang/ ru/nid/209150

  16. Bolshov, M.A., Kuritsyn, Yu.A., Liger, V.V., Mironenko, V.R., Nadezhdinskii, A.I., Ponurovskii, Ya.Ya., Leonov, S.B., and Yarantsev, D.A., Quantum Electron., 2015, vol. 45, no. 4, p. 377.

    Article  ADS  Google Scholar 

  17. NTT Electronics Corporation (NEL). http://www.ntt-electronics. com/en/products/photonics/gas_sensing.html

  18. Voloshchenko, O.V., Zosimov, S.A., Ivan’kin, M.A., Kolesnikov, O.M., Nikolaev, A.A., Tereshin, A.M., and Chevagin, A.F., Tr. Tsentr. Aerogidrodin. Inst., 2015, no. 2736.

    Google Scholar 

  19. Sacher Lasertechnik. http://www.sacher-laser.com/home/ laser-diodes/distributed_feedback_laser/dfb/single_ mode.html

  20. Leonov, S.B., Firsov, A.A., Yarantsev, D.A., Bolshov, M.A., Kuritsyn, Yu.A., Liger, V.V., and Mironenko, V.R., Temperature measurement in plasma-assisted combustor by TDLAS, AIAA Pap. 2012-3181, 2012.

    Book  Google Scholar 

  21. Filippov, A.I., Akhmetova, O.V., and Rodionov, A.S., High Temp., 2013, vol. 51, no. 2, p. 246.

    Article  Google Scholar 

  22. Zakirov, I.M., Zalyalieva, F.F., Tukhvatullin, R.S., and Ashrapov, T.A., High Temp., 2013, vol. 51, no. 6, p. 742.

    Article  Google Scholar 

  23. Askarova, A.S., Messerle, V.E., Ustimenko, A.B., Bolegenova, S.A., Maksimov, V.Yu., and Gabitova, Z.Kh., High Temp., 2015, vol. 53, no. 3, p. 445.

    Article  Google Scholar 

  24. Teichert, H., Fernholz, T., and Ebert, V., Appl. Opt., 2003, vol. 42, p. 2043.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Bolshov.

Additional information

Original Russian Text © V.V. Liger, Yu.A. Kuritsyn, V.R. Mironenko, M.A. Bolshov, Ya.Ya. Ponurovskii, O.M. Kolesnikov, 2018, published in Teplofizika Vysokikh Temperatur, 2018, Vol. 56, No. 1, pp. 92–103.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liger, V.V., Kuritsyn, Y.A., Mironenko, V.R. et al. Measurement of Non-Stationary Gas Flow Parameters Using Diode Laser Absorption Spectroscopy at High Temperatures and Pressures. High Temp 56, 98–108 (2018). https://doi.org/10.1134/S0018151X18010108

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X18010108

Navigation