Skip to main content
Log in

On the applicability of the optical emission of triplet states of hydrogen molecules for the diagnostics of non-equilibrium microwave hydrogen discharge

  • Plasma Investigations
  • Published:
High Temperature Aims and scope

Abstract

Emission spectra of gas discharges resulted from dipole allowed transitions between triplet states of the hydrogen molecule are placed in the near ultraviolet, visible and near infrared wavelength ranges. This makes them attractive for use in spectral diagnostics of gas discharges. An improved collisional-radiative model is used for analysis of applicability of optical emission spectroscopy based on the emission of triplet states of molecular hydrogen for diagnostics of non-equilibrium microwave plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Applications of Plasmas to Chemical Processing, Baddour, R.F. and Timmins, R.S., Eds., Cambridge: MIT Press, 1967.

  2. Techniques and Applications of Plasma Chemistry, Hollahan, J.R. and Bell, A.T., Eds., New York: Willey, 1974.

  3. Wightman, J.P., Proc. IEEE, 1974, vol. 62, p. 4.

    Article  Google Scholar 

  4. Lebedev, Yu.A. and Polak, L.S., High Energy Chem., 1980, vol. 13, p. 331.

    Google Scholar 

  5. Microwave Excited Plasmas, Moisan, M. and Pelletier, J., Eds., Amsterdam: Elsevier, 1992.

  6. Fizika i khimiya gazovyh razryadov v puchkah SVCh-voln (Physics and Chemistry of Gas Discharges in Microwave Beams), Kovrizhnykh, L.M., Ed., Tr. Inst. Obshch. Fiz. im. A. M. Prokhorova, Ross. Akad. Nauk, 1994, vol. 47.

  7. Wertheimer, M.R. and Moisan, M., Pure Appl. Chem., 1994, vol. 66, p. 1343.

    Article  Google Scholar 

  8. Mehedi, H.A., Achard, J., Rats, D., Brinza, O., Tallaire, A., Mille, V., Silva, F., Provent, Ch., and Gicquel, A., Diamond Relat. Mater., 2014, vol. 47, p. 58.

    Article  ADS  Google Scholar 

  9. Vikharev, A.L., Gorbachev, A.M., Kozlov, A.V., Koldanov, V.A., Litvak, A.G., Ovechkin, N.M., Radishev, D.B., Bykov, Yu.V., and Caplan, M., Diamond Relat. Mater., 2006, vol. 15, p. 502.

    Article  ADS  Google Scholar 

  10. Silva, F., Hassouni, K., Bonnin, X., and Gicquel, A., J. Phys.: Condens. Matter, 2009, vol. 21, 364202.

    Google Scholar 

  11. Vikharev, A.L., Gorbachev, A.M., Muchnikov, A.B., Radishev, D.B., Kopelovich, E.A., and Troitskiy, M.M., J. Phys. D: Appl. Phys., 2012, vol. 45, 395202.

    Article  Google Scholar 

  12. Ma, J., Ashfold, M.N.R., and Mankelevich, Yu.A., J. Appl. Phys., 2009, vol. 105, 043302.

    Article  ADS  Google Scholar 

  13. King, D., Yaran, M.K., Schuelke, T., Grotjohn, T.A., Reinhard, D.K., and Asmussen, J., Diamond Relat. Mater., 2008, vol. 17, p. 520.

    Article  ADS  Google Scholar 

  14. Grotjohn, T., Liske, R., Hassouni, K., and Asmussen, J., Diamond Relat. Mater., 2005, vol. 14, p. 288.

    Article  ADS  Google Scholar 

  15. Shakhatov, V.A. and Lebedev, Yu.A., High Temp., 2011, vol. 49, no. 2, p. 257.

    Article  Google Scholar 

  16. Shakhatov, V.A., Lebedev, Yu.A., and Lacoste, A., and Bechu, S., High Temp., 2015, vol. 53, no. 4, p. 569.

    Article  Google Scholar 

  17. Shakhatov, V.A., Lebedev, Yu.A., Lacoste, A., and Bechu, S., High Temp., 2016, vol. 54, no. 1, p. 120.

    Article  Google Scholar 

  18. Shakhatov, V.A. and Lebedev, Yu.A., Usp. Prikl. Fiz., 2014, vol. 2, no. 6, p. 571.

    Google Scholar 

  19. Shakhatov, V.A. and Lebedev, Yu.A., Usp. Prikl. Fiz., 2015, vol. 3, no. 1, p. 21.

    Google Scholar 

  20. Bechu, S., Lacoste, A., Lebedev, Yu.A., and Shakhatov, V.A., Prikl. Fiz., 2015, vol. 2, p. 45.

    Google Scholar 

  21. Shakhatov, V.A., Lebedev, Yu.A., Lacoste, A., and Bechu, S., High Temp., 2016, vol. 54, no. 4, p. 467.

    Article  Google Scholar 

  22. Shakhatov, V.A. and Gordeev, O.A., Opt. Spectrosc., 2007, vol. 103, p. 483.

    Article  Google Scholar 

  23. Lebedev, Yu.A. and Mokeev, M.V., Plasma Phys. Rep., 2000, vol. 26, p. 272.

    Article  ADS  Google Scholar 

  24. Lebedev, Yu.A. and Mokeev, M.V., Plasma Phys. Rep., 2001, vol. 27, p. 418.

    Article  ADS  Google Scholar 

  25. Gritsinin, S.I., Kossyi, I.A., Malykh, N.I., et al., J. Phys. D: Appl. Phys., 1998, vol. 31, p. 2942.

    Article  ADS  Google Scholar 

  26. Carl, D.S., Farhat, S., Gicquel, A., et al., J. Thermophys. Heat Transfer, 1996, vol. 10, p. 426.

    Article  Google Scholar 

  27. Lebedev, Yu.A. and Karoulina, E.V., J. Phys. D: Appl. Phys., 1988, vol. 21, p. 411.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Lebedev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakhatov, V.A., Lebedev, Y.A. On the applicability of the optical emission of triplet states of hydrogen molecules for the diagnostics of non-equilibrium microwave hydrogen discharge. High Temp 55, 496–501 (2017). https://doi.org/10.1134/S0018151X17040198

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X17040198

Navigation