Skip to main content
Log in

Nonisothermal dissipative flow of viscous liquid in a porous channel

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

Stationary nonisothermal flow of viscous Newtonian liquid in a flat channel filled with porous material is studied. The Brinkman equation is used as a motion equation. It is assumed that viscosity depends on temperature. The energy equation is denoted using a single-temperature model. Dissipative heat emissions are accounted. The problem is solved for temperature first-order boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nield, D.A. and Bejan, A., Convection in Porous Media, New York: Springer, 2006.

    MATH  Google Scholar 

  2. Vafai, K., Porous Media: Applications in Biological Systems and Biotechnology, Tokyo: CRC, 2010.

    Book  Google Scholar 

  3. Kuznetsov, A.V., J. Porous Media, 1999, vol. 3, no. 3, p. 309.

    Google Scholar 

  4. Xiong, M. and Kuznetsov, A.V., J. Porous Media, 2000, vol. 3, no. 3, p. 245.

    Article  Google Scholar 

  5. Kuznetsov, A.V. and Nield, D.A., J. Heat Transfer, 2008, vol. 130, no. 9, 094504.

    Article  Google Scholar 

  6. Min Jung Yim and Kim Sung Jin, J. Heat Transfer, 2005, vol. 127, no. 6, p. 648.

    Article  Google Scholar 

  7. Teamah, M.A., El-Mghlany, W.M., and Dawood, M.M.Kh., Int. J. Therm. Sci., 2011, vol. 50, no. 8, p. 1512.

    Article  Google Scholar 

  8. Yang Chen, Nakayama Akira, and Liu Wei, Int. J. Therm. Sci., 2012, vol. 54, p. 98.

    Article  Google Scholar 

  9. Chen, G. and Hadim, H.A., J. Porous Media, 1999, vol. 2, p. 59.

    Article  Google Scholar 

  10. Nield, D.A. and Kuznetsov, A.V., Int. J. Heat Mass Transfer, 2005, vol. 48, no. 6, p. 1214.

    Article  Google Scholar 

  11. Nield, D.A., Kuznetsov, A.V., and Ming Xiong, J. Porous Media, 2004, vol. 7, no. 1, p. 19.

    Article  Google Scholar 

  12. Khashan, S.A. and Al-Nimr, M.A., Transp. Porous Media, 2005, vol. 61, no. 3, p. 291.

    Article  Google Scholar 

  13. Haji-Sheikh, A., J. Heat Transfer, 2006, vol. 128, no. 6, p. 550.

    Article  Google Scholar 

  14. Cekmer, O., Mobedi, M., Ozerdem, B., and Pop, I., Transp. Porous Media, 2011, vol. 90, p. 791.

    Article  MathSciNet  Google Scholar 

  15. Nield, D.A., Kuznetsov, A.V., and Ming, Xiong, Int. J. Heat Mass Transfer, 2003, vol. 46, p. 643.

    Article  Google Scholar 

  16. Nield, D.A., Kuznetsov, A.V., and Ming, Xiong, Transp. Porous Media, 2004, vol. 56, p. 351.

    Article  Google Scholar 

  17. Nield, D.A., J. Heat Transfer, 2007, vol. 129, p. 1459.

    Article  Google Scholar 

  18. Haji-Sheikh, A., Nield, D.A., and Hooman, K., Int. J. Heat Mass Transfer, 2006, vol. 49, p. 3004.

    Article  Google Scholar 

  19. Tada, S. and Ichimiya, K., Int. J. Heat Mass Transfer, 2007, vol. 50, p. 2406.

    Article  Google Scholar 

  20. Chen, G.M. and Tso, C.P., Int. Commun. Heat Mass Transfer, 2011, vol. 38, p. 57.

    Article  Google Scholar 

  21. Barletta, A., Rossi di Schio, E., and Celli, M., Transp. Porous Media, 2011, vol. 87, no. 1, p. 105.

    Article  MathSciNet  Google Scholar 

  22. Coelho, P.M. and Pinho, F.T., Int. J. Heat Mass Transfer, 2006, vol. 49, p. 3349.

    Article  Google Scholar 

  23. Chen, G.M. and Tso, C.P., Int. J. Heat Mass Transfer, 2011, vol. 54, p. 1791.

    Article  Google Scholar 

  24. Chen, G.M. and Tso, C.P., Int. J. Heat Mass Transfer, 2011, vol. 54, p. 5406.

    Article  Google Scholar 

  25. Barletta, A. and Celli, M., Int. J. Therm. Sci., 2011, vol. 50, no. 1, p. 53.

    Article  Google Scholar 

  26. Hooman, K. and Gurgenci, H., Appl. Math. Mech. (Engl. Ed.), 2007, vol. 28, no. 1, p. 69.

    Article  Google Scholar 

  27. Tyabin, N.V., Dakhin, O.Kh., and Baranov, A.V., High Temp., 1982, vol. 20, no. 1, p. 74.

    Google Scholar 

  28. Dakhin, O.Kh., Baranov, A.V., and Tyabin, N.V., High Temp., 1983, vol. 21, no. 4, p. 565.

    Google Scholar 

  29. Malkin, A.Ya., Baranov, A.V., and Tyabin, N.V., Teor. Osn. Khim. Tekhnol., 1991, vol. 25, no. 1, p. 72.

    Google Scholar 

  30. Epov, M.I., Terekhov, V.I., Nizovtsev, M.I., and Shurina, E.P., High Temp., 2015, vol. 53, no. 1, p. 45.

    Article  Google Scholar 

  31. Malkin, A.Ya., Baranov, A.V., and Timofeev, S.V., J. Non-Newtonian Fluid Mech., 1994, vol. 54, p. 489.

    Article  Google Scholar 

  32. Malkin, A.Ya., Baranov, A.V., and Dakhin, O.Kh., Int. Polym. Process., 1995, vol. 10, no. 2, p. 99.

    Article  Google Scholar 

  33. Malkin, A.Ya., Baranov, A.V., and Dakhin, O.Kh., Int. Polym. Process., 1999, vol. 14, no. 2, p. 115.

    Article  Google Scholar 

  34. Baranov, A.V. and Dakhin, O.Kh., Composites: Mech., Comput. Appl., Int. J., 2014, vol. 5, no. 2, p. 159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Baranov.

Additional information

Original Russian Text © A.V. Baranov, 2017, published in Teplofizika Vysokikh Temperatur, 2017, Vol. 55, No. 3, pp. 433–439.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranov, A.V. Nonisothermal dissipative flow of viscous liquid in a porous channel. High Temp 55, 414–419 (2017). https://doi.org/10.1134/S0018151X17030014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X17030014

Navigation