Skip to main content
Log in

Modeling of the chemical composition of DC atmospheric pressure air discharge plasma in contact with aqueous solutions of sodium dodecylbenzenesulfonate

  • Plasma Investigations
  • Published:
High Temperature Aims and scope

Abstract

The results of calculation of the chemical composition of plasma of the DC atmospheric pressure discharge in air in contact with aqueous solutions of sulfonol (C12H25C6H4SO3Na) in the concentration range of 0–10 g/L at a discharge current of 40 mA are presented. At modeling, the combined solution of Boltzmann equation for the electron gas, equations of vibrational kinetics for ground states of N2, O2, H2O, and NO molecules, equations of chemical kinetics and plasma conductivity equation were used. It was shown that sodium atoms appearing as a result of transfer processes from the liquid cathode affect the chemical composition of the plasma and the characteristics of the electron gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang, B., Zheng, J., Qiu, S., Wu, M., Zhang, Q., Yan, Z., and Xue, Q., Chem. Eng. J., 2014, vol. 236, p. 348.

    Article  Google Scholar 

  2. Titov, V.A., Rybkin, V.V., Maximov, A.I., and Choi, H.-S., Plasma Chem. Plasma Process., 2005, vol. 25, no. 5, p. 502.

    Article  Google Scholar 

  3. Son, E.E., Sadriev, R.Sh., Gaisin, Al.F., Bagautdinova, L.N., Gaisin, F.M., Shakirova, E.F., Akhatov, M.F., Gaisin, Az.F., and Kayumov, R.R., High Temp., 2014, vol. 52, no. 6, p. 939.

    Article  Google Scholar 

  4. Poverkhnostno-aktivnye veshchestva i kompozitsii. Spravochnik (Surfactants and compositions: Reference Book) Pletnev, M.Yu., Ed., Moscow: Firma Klavel’, 2002.

    Google Scholar 

  5. Shutov, D.A., Konovalov, A.S., Isakina, A.A., and Bobkova, E.S., High Energy Chem., 2013, vol. 47, no. 5, p. 258.

    Article  Google Scholar 

  6. Shutov, D.A., Konovalov, A.S., and Dronik, V.D., High Temp., 2014, vol. 52, no. 5, p. 627.

    Article  Google Scholar 

  7. Diamy, A.-M., Legrand, J.-C., Smirnov, S.A., and Rybkin, V.V., Contrib. Plasma Phys., 2005, vol. 45, no. 1, p. 5.

    Article  ADS  Google Scholar 

  8. Titov, V.A., Rybkin, V.V., Smirnov, S.A., Kulentsan, A.N., and Choi, H.-S., Plasma Chem. Plasma Process., 2006, vol. 26, no. 6, p. 543.

    Article  Google Scholar 

  9. Gordiets, B.F., Ferreira, C.M., Guerra, V.L., Loureiro, J.M., Nahorny, J., Pagnon, D., Touzeau, M., and Vialle, M., IEEE Trans. Plasma Sci., 1995, vol. 23, no. 4, p. 750.

    Article  ADS  Google Scholar 

  10. Kajita, S., Ushiroda, S., and Kondo, Y., J. Phys. D: Appl. Phys., 1990, vol. 67, no. 9, p. 4015.

    ADS  Google Scholar 

  11. Puech, V. and Torchin, L., J. Phys. D: Appl. Phys., 1986, vol. 19, no. 12, p. 2309.

    Article  ADS  Google Scholar 

  12. Rybkin, V.V., Titov, V.A., and Kholodkov, I.V., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2008, vol. 51, no. 3, p. 3.

    Google Scholar 

  13. Rybkin, V.V., Titov, V.A., and Kholodkov, I.V., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2009, vol. 52, no. 12, p. 3.

    Google Scholar 

  14. Laher, R.R. and Gilmore, F.R., J. Phys. Chem. Ref. Data, 1990, vol. 19, no. 1, p. 277.

    Article  ADS  Google Scholar 

  15. Louriero, J. and Ferreira, C.M., J. Phys. D: Appl. Phys., 1989, vol. 22, no. 11, p. 1680.

    Article  ADS  Google Scholar 

  16. Fujii, K. and Snvastava, S.K., J. Phys. D, 1995, vol. 28, p. L559.

    Article  ADS  Google Scholar 

  17. Roy, D.N., Phys. Lett. A, 1978, vol. 64, no. 4, p. 373.

    Article  ADS  Google Scholar 

  18. Bobkova, E.S., Smirnov, S.A., Zalipaeva, Yu.V., and Rybkin, V.V., Plasma Chem. Plasma Process., 2014, vol. 34, no. 4, p. 721.

    Article  Google Scholar 

  19. Bobkova, E.S., Shikova, T.G., Grinevich, V.I., and Rybkin, V.V., High Energy Chem., 2012, vol. 46, no. 1, p. 56.

    Article  Google Scholar 

  20. Shutov, D.A., Smirnov, S.A., and Rybkin, V.V., High Energy Chem., 2014, vol. 48, no. 6, p. 391.

    Article  Google Scholar 

  21. Zhang, J., Chen, J., and Li, X., J. Water Resour. Prot., 2009, vol. 1, no. 2, p. 99.

    Article  Google Scholar 

  22. Lukes, P. and Locke, B.R., J. Phys. D: Appl. Phys., 2005, vol. 38, no. 22, p. 4074.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Shutov.

Additional information

Original Russian Text © D.A. Shutov, S.A. Smirnov, A.S. Konovalov, A.N. Ivanov, 2016, published in Teplofizika Vysokikh Temperatur, 2016, Vol. 54, No. 4, pp. 508–512.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shutov, D.A., Smirnov, S.A., Konovalov, A.S. et al. Modeling of the chemical composition of DC atmospheric pressure air discharge plasma in contact with aqueous solutions of sodium dodecylbenzenesulfonate. High Temp 54, 483–487 (2016). https://doi.org/10.1134/S0018151X16040210

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X16040210

Navigation