Skip to main content
Log in

The generalized scaling laws based on some deductions from the van der Waals equation

  • Thermophysical Properties of Materials
  • Published:
High Temperature Aims and scope

Abstract

Some thermodynamic relations that follow from the van der Waals equation are considered. It is shown that they are applicable to real substances and model systems described by absolutely different equations of state. These relations are associated with definite geometric lines on the density–temperature plane. The data for the model systems that substantiate the derived regularities were calculated by numerical simulation methods. For real substances, the relevant databases constructed according to experiments were used. It has also been established by numerical simulation that the limitations of the regularities under investigation are related to the nature of attraction in the interparticle interaction potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van der Waals, J.D., PhD Thesis, Leiden, The Netherlands, 1873.

    Google Scholar 

  2. Smirnov, B.M., Usp. Fiz. Nauk, 2001, vol. 171, no. 12, p. 1291.

    Article  Google Scholar 

  3. Cailletet, L.P. and Mathias, E.C., J. Phys. Théor. Appl., 1886, vol. 5, p. 549.

    Article  Google Scholar 

  4. Timmemans, J., Physico-Chemical Constants of Pure Organic Compounds, Amsterdam: Elsevier, 1950.

  5. Fillipov, L.P., High Temp., 1984, vol. 22, no. 4, p. 545.

    Google Scholar 

  6. Fillipov, L.P., High Temp., 1987, vol. 25, no. 6, p. 789.

    Google Scholar 

  7. Sanchez, I.C. and Biening, K.L., J. Phys. Chem. B, 2014, vol. 118, no. 42, p. 13704.

    Article  Google Scholar 

  8. Novikov, I.I., High Temp., 1995, vol. 33, no. 1, p. 149.

    Google Scholar 

  9. Novikov, I.I., High Temp., 1997, vol. 35, no. 4, p. 659.

    Google Scholar 

  10. Batchinski, A., Ann. Phys., 1906, vol. 19, p. 307.

    Article  Google Scholar 

  11. Holleran, E., Ind. Eng. Chem. Fundam., 1974, vol. 13, no. 3, p. 297.

    Article  Google Scholar 

  12. Powels, J.G., J. Phys. C: Solid State Phys., 1983, vol. 16, p. 503.

    Article  ADS  Google Scholar 

  13. Rabinovich, V.A., Vasserman, A.A., and Nedostup, V.I., Thermophysical Properties of Neon, Argon, Krypton, and Xenon, Berlin: Hemispere, 1988.

    Google Scholar 

  14. Kutney, M.C., Reagan, M.T., Smith, K.A., Tester, J.W., and Herschbach, D.R., J. Phys. Chem. B, 2000, vol. 104, p. 9513.

    Article  Google Scholar 

  15. Apfelbaum, E.M. and Vorob’ev, V.S., J. Phys. Chem. B, 2009, vol. 113, no. 11, p. 3521.

    Article  Google Scholar 

  16. Apfelbaum, E.M. and Vorob’ev, V.S., J. Phys. Chem., 2009, vol. 130, no. 21, p. 214111.

    Article  Google Scholar 

  17. Apfelbaum, E.M. and Vorob’ev, V.S., J. Phys. Chem. B, 2013, vol. 117, no. 25, p. 7750.

    Article  Google Scholar 

  18. Apfelbaum, E.M. and Vorob’ev, V.S., J. Phys. Chem. B, 2014, vol. 118, no. 42, p. 12239.

    Article  Google Scholar 

  19. Nedostup, V.I., High Temp., 2013, vol. 51, no. 1, p. 72.

    Article  Google Scholar 

  20. Wei, Q.R. and Herschbach, D.R., J. Phys. Chem. C, 2013, vol. 117, no. 43, p. 22438.

    Article  Google Scholar 

  21. Kulinskii, V.L., J. Chem. Phys., 2014, vol. 141, no. 5, p. 054503.

    Article  ADS  Google Scholar 

  22. Fillipov, L.P., Metody rascheta i prognozirovaniya svoistv veshchestv (Methods of Calculation and Prediction of Properties of Substances), Moscow: Mosk. Gos. Univ., 1988.

    Google Scholar 

  23. Brazhkin, V.V. and Ryzhov, V.N., J. Chem. Phys., 2011, vol. 135, no. 8, p. 084503.

    Article  ADS  Google Scholar 

  24. Brazhkin, V.V., Lyapin, A.G., Ryzhov, V.N., Trachenko, K., Fomin, Yu.D., and Tsiok, E.N., Usp. Fiz. Nauk, 2012, vol. 182, no. 11, p. 1137.

    Article  Google Scholar 

  25. Guggenheim, E.A., J. Chem. Phys., 1945, vol. 13, no. 7, p. 253.

    Article  ADS  Google Scholar 

  26. Balescu, R., Equilibrium and Nonequilibrium Statistical Mechanics, New York: Wiley, 1975.

    MATH  Google Scholar 

  27. Mulero, A. and Parra, M.I., Phys. Chem. Liq., 2008, vol. 46, no. 3, p. 263.

    Article  Google Scholar 

  28. Shah, P., Chakrabarti, P., and Chakravarty, C., Mol. Phys., 2001, vol. 99, no. 7, p. 573.

    Article  ADS  Google Scholar 

  29. Apfelbaum, E.M. and Vorob’ev, V.S., J. Chem. Phys., 2013, vol. 139, no. 4, p. 046101.

    Article  ADS  Google Scholar 

  30. Burshtein, A.L., J. Mol. Liq., 1993, vol. 58, p. 1.

    Article  Google Scholar 

  31. Kulinskii, V.L., J. Phys. Chem. B, 2010, vol. 114, no. 8, p. 2852.

    Article  Google Scholar 

  32. Bulavin, L.A. and Kulinskii, V.L., J. Phys. Chem. B, 2011, vol. 115, no. 19, p. 6061.

    Article  Google Scholar 

  33. Apfelbaum, E.M. and Vorob’ev, V.S., J. Phys. Chem. B, 2010, vol. 114, no. 30, p. 9820.

    Article  Google Scholar 

  34. Vorob’ev, V.S., Chem. Phys. Lett., 2014, vols. 605–606, p. 47.

    Article  Google Scholar 

  35. Lemmon, E.W., McLinden, W.M.O., and Friend, D.G., NIST Chemistry WebBook, NIST Standard Reference Database, Linstrom, P.J. and Mallard, M.G., Eds., no. 69 (online), Gaithersburg, MD, 2004. http://webbooknistgov/chemistry/f luid/.

  36. Span, R., Lemmon, E.W., Jacobsen, R.T., Wagner, W., and Yokozeki, A.A., J. Phys. Chem. Ref. Data, 2000, vol. 29, no. 6, p. 1361.

    Article  ADS  Google Scholar 

  37. Fokin, L.R. and Popov, V.N., High Temp., 2013, vol. 51, no. 4, p. 465.

    Article  Google Scholar 

  38. Grilly, E.R. and Mills, R.L., Phys. Rev., 1957, vol. 105, no. 4, p. 1140.

    Article  ADS  Google Scholar 

  39. Kozhevnikov, V.F., Zh. Eksp. Teor. Fiz., 1990, vol. 97, no. 2, p. 541.

    ADS  Google Scholar 

  40. Jungst, S., Knuth, B., and Hensel, F., Phys. Rev. Lett., 1985, vol. 55, no. 20, p. 2160.

    Article  ADS  Google Scholar 

  41. Kikoin, I.K. and Senchenkov, A.P., Fiz. Met. Metalloved., 1967, vol. 24, no. 5, p. 843.

    Google Scholar 

  42. Fokin, L.R., Popov, V.N., and Naurzakov, S.P., High Temp., 2011, vol. 49, no. 6, p. 832.

    Article  Google Scholar 

  43. Stankus, S.V., Khairulin, R.A., Martynets, V.G., and Bezverkhii, P.P., High Temp., 2013, vol. 51, no. 5, p. 695.

    Article  Google Scholar 

  44. Gathers, G.R., Rep. Prog. Phys., 1986, vol. 49, no. 4, p. 341.

    Article  ADS  Google Scholar 

  45. Korobenko, V.N. and Rakhel, A.D., J. Phys.: Condens. Matter, 2014, vol. 26, no. 4, p. 045701.

    Google Scholar 

  46. Fortov, V.E., Dremin, A.N., and Leont’ev, A.A., Teplofiz. Vys. Temp., 1975, vol. 13, no. 5, p. 1072.

    Google Scholar 

  47. Likalter, A.A., Phys. Rev. B: Condens. Matter Mater. Phys., 1996, vol. 53, no. 8, p. 4386.

    Article  ADS  Google Scholar 

  48. Hess, H., Kloss, A., Rakhel, A., and Schneidenbach, H., Int. J. Thermophys., 1999, vol. 20, no. 4, p. 1279.

    Article  Google Scholar 

  49. Beutl, M., Pottlacher, G., and Jaiger, H., Int. J. Thermophys., 1994, vol. 15, no. 6, p. 6.

    Google Scholar 

  50. Lomonosov, I.V., Doctoral (Phys.-Math.) Dissertation, Chernogolovka: Inst. Probl. Chem. Phys., Russ. Acad. Sci., 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Apfelbaum.

Additional information

Original Russian Text © V.S. Vorob’ev, E.M. Apfelbaum, 2016, published in Teplofizika Vysokikh Temperatur, 2016, Vol. 54, No. 2, pp. 186–196.

Based on the Proceedings of the XIV Russian Conference on the Thermophysical Properties of Substances (RCTP-14), Kazan, October 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorob’ev, V.S., Apfelbaum, E.M. The generalized scaling laws based on some deductions from the van der Waals equation. High Temp 54, 175–185 (2016). https://doi.org/10.1134/S0018151X16020243

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X16020243

Keywords

Navigation