Skip to main content
Log in

Technique for measuring liquid lead thermal conductivity at 350–1000°C

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

We propose a technique for the determination of the thermal conductivity of liquid lead by the flash method where the thermal conductivity is calculated on the basis of the initial section of the temperature-vs.-time profile. We present the results of measurements of thermal conductivity of the liquid C1 lead within the temperature range of 350–1000°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beznosov, A.V., Dragunov, Yu.G., and Rachkov, V.I., Tyazhelye zhidkometallicheskie teplonositeli v atomnoi energetike (Heavy Liquid-Metal Coolants in Nuclear Power Engineering), Moscow: IzdAt, 2007, p. 434.

    Google Scholar 

  2. Martynov, P.N., Askhadullin, R.Sh., Starozhenko, A.N., et al., in Tezisy dokladov 4-i konferentcii “Tyazhelye zhidkometallicheskie teplonositeli v yadernykh tekhnologiyakh” (TZhMT-2013), Obninsk, 23–26 sentyabrya, 2013. (Abstracts of Papers of the Fourth Conference “Heavy Liquid-Metal Coolants in Nuclear Technologies” (TZhMT-2013), Obninsk, Russia, September 23–26, 2013., Obninsk: State Science Centre of Russian Federation–Institute for Physics and Power Engineering named after A. I. Leypunsky, p. 42.

    Google Scholar 

  3. Sobolev, V., J. Nucl. Mater., 2007, vol. 362, p. 235.

    Article  ADS  Google Scholar 

  4. Sobolev, V., Database of Thermophysical Properties of Liquid Metal Coolants for GEN-IV, Boeretang, Belgium: Belgian Nuclear Research Centre 2010, p. 143.

    Google Scholar 

  5. Savchenko, I.V., Stankus, S.V., and Agazhanov, A.Sh., At. Energ., 2013, vol. 115, no. 2, p. 74.

    Article  Google Scholar 

  6. Savchenko, I.V., Cand. Sci. (Phys.–Math.) Dissertation, Novosibirsk: Institute of Thermal Physics, of the Siberian Branch of the Russian Academy of Sciences, 2011.

    Google Scholar 

  7. Thermophysical Properties of Materials for Nuclear Engineering: A Tutorial and Collection of Data, Kirillov, P.L., Ed., Vienna, Austria: International Atomic Energy Agency, 2008.

  8. Parker, W.J., Jenkins, R.J., Butler, C.P., and Abbott, G.L., J. Appl. Phys., 1961, vol. 32, p. 1679.

    Article  ADS  Google Scholar 

  9. Cape, J.A. and Lehman, G.W., J. Appl. Phys., 1963, vol. 34, p. 1909.

    Article  ADS  Google Scholar 

  10. Clark, L.M. and Taylor, R.E., J. Appl. Phys., 1975, vol. 46, p. 714.

    Article  ADS  Google Scholar 

  11. Yutaka Tada, Makoto Harada, Masataka Tanigaki, and Waturu Eguchi, Rev. Sci. Instrum., 1978, vol. 49, no. 9, p. 1305.

    Google Scholar 

  12. Ronchi, C., Sheindlin, M., Musella, M., and Hyland, G.J., J. Appl. Phys., 1999, vol. 85, no. 2, p. 776.

    Article  ADS  Google Scholar 

  13. Kruglov, A.B., Kruglov, V.B., and Tenishev, A.V., High Temp., 2010, vol. 48, no. 1, p. 136.

    Article  Google Scholar 

  14. http://www.netzsch.com.

  15. Vozdeistvie zhidkikh metallov na konstruktsionnye materially (The Effect of Liquid Metals on Structural Materials), Moscow, 1960, vol. 39, p. 93.

  16. Tablitsy standartnykh spravochnykh dannykh. Stali 12Kh18N9T i 12Kh18N10T. Udel’naya teploemkost’ i udel’naya ental’piya v diapazone temperatur 400–1380 K pri atmosfernom davlenii. GSSSD 32-82 (Tables of Standard Reference Data. Steels 12X18H9T and 12X18H10T. Specific Heat Capacity and the Specific Enthalpy in the Temperature Range of 400–1380 K at Atmospheric Pressure. GSSSD 32-82), Moscow: Izd. Standartov, 1983.

  17. Tablitsy standartnykh spravochnykh dannykh. Stal’ nerzhaveyushchaya marki 12Kh18N10T. Teploprovodnost’ pri temperaturakh 340–1100 K (Tables of Standard Reference Data. Stainless Steel 12X18H10T. Thermal Conductivity at Temperatures of 340–1100 K), Moscow: Izd. Standartov, 1994.

  18. Tablitsy standartnykh spravochnykh dannykh. Molibden, monokristallicheskaya okis’ alyuminiya, stal' 12Kh18N10T. Temperaturnyi koeffitsient lineinogo rasshireniya. GSSSD 59-83 (Tables of Standard Reference Data. Molybdenum, Single Crystal Aluminum Oxide, Steel 12X18H10T. Temperature Coefficient of Linear Expansion. GSSSD 59-83), Moscow: Izd. Standartov, 1984.

  19. Tablitsy standartnykh spravochnykh dannykh. Plotnost’ svintsa, vismuta i ikh evtekticheskogo splava v kondensirovannom sostoyanii. GSSSD 229-07 (Tables of Standard Reference Data. Densities of Lead, Bismuth, and Their Eutectic Alloy in the Condensed State. GSSSD 229-07), Moscow: Izd. Standartov, 2007.

  20. Chirkin, V.S., Teplofizicheskie svoistva materialov yadernoi tekhniki (Thermal and Physical Properties of Materials of Nuclear Engineering), Moscow: Atomizdat, 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Kruglov.

Additional information

Original Russian Text © A.B. Kruglov, V.B. Kruglov, V.I. Rachkov, P.G. Struchalin, V.S. Kharitonov, R.Sh. Askhadullin, P.N. Martynov, 2015, published in Teplofizika Vysokikh Temperatur, 2015, Vol. 53, No. 4, pp. 596–600.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruglov, A.B., Kruglov, V.B., Rachkov, V.I. et al. Technique for measuring liquid lead thermal conductivity at 350–1000°C. High Temp 53, 564–568 (2015). https://doi.org/10.1134/S0018151X15030104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X15030104

Keywords

Navigation