Skip to main content
Log in

Measurement of the heat transfer coefficient of a nanofluid based on water and copper oxide particles in a cylindrical channel

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

The heat transfer coefficient of a nanofluid in a cylindrical channel under constant heat flux density at the walls is measured experimentally. The studied fluid was prepared based on distilled water and CuO nanoparticles with an average size of 55 nm. To stabilize the nanofluid, a biopolymer was used. The volume concentration of nanoparticles was in the range from 0.25 to 2%. It is shown that the nanofluid is Newtonian at the lowest concentration of nanoparticles, and in all other cases, its rheology is described well by the model of a power-law fluid. A correlation of the dependence of the parameters of this model on the concentration of nanoparticles is obtained. It is found that the presence of nanoparticles greatly intensifies the heat transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahuja, A.S., J. Appl. Phys., 1975, vol. 46, p. 224.

    Google Scholar 

  2. Das, S.K., Choi, S.U.S., and Patel, H., Heat Transfer Eng., 2006, vol. 20, no. 10, p. 3.

    Article  ADS  Google Scholar 

  3. Das, S.K., Choi, S.U.S., Yu, W., and Pradeep, T., Nanofluids Science and Technology, Hoboken, New Jersey, United States: Wiley, 2007, p. 397.

    Book  Google Scholar 

  4. Keblinski, P., Prasher, R., and Eapen, J., J. Nanopart. Res., 2008, vol. 10, no. 7, p. 1089.

    Article  Google Scholar 

  5. Wang, X.-Q. and Mujumbar, A.S., Int. J. Therm. Sci., 2007, vol. 46, p. 1.

    Article  MATH  Google Scholar 

  6. Yu, W., France, D.M., Choi, S.U.S., and Routbort, J.L., Argonne Natl. Lab., 2007, no. ANL/ESD/07-9, p. 78.

    Google Scholar 

  7. Terekhov, V.I., Kalinina, S.V., and Lemanov, V.V., Thermophys. Aeromech., 2010, vol. 17, no. 2, p. 157.

    Article  ADS  Google Scholar 

  8. Rudyak, V.Ya., Belkin, A.A., and Tomilina, E.A., Tech. Phys. Lett., 2010, vol. 36, no. 7, p. 660.

    Article  ADS  Google Scholar 

  9. Rudyak, V.Ya. and Belkin, A.A., Nanosist.: Fiz., Khim., Mat., 2010, vol. 1, no. 1, p. 156.

    Google Scholar 

  10. Minakov, A.V., Lobasov, A.S., Rudyak, V.Ya., and Pryazhnikov, M.I., Tepl. Protsessy Tekh., 2013, vol. 5, no. 5, p. 194.

    Google Scholar 

  11. Varaksin, A.Yu., High Temp., 2013, vol. 51, no. 3, p. 377.

    Article  Google Scholar 

  12. Karpukhin, V.T., Malikov, M.M., Borodina, T.I., Val’yano, G.E., and Gololobova, O.A., High Temp., 2011, vol. 49, no. 5, p. 679.

    Article  Google Scholar 

  13. Pak, B. and Cho, Y.I., Exp. Heat Transfer, 1998, vol. 11, p. 151.

    Article  ADS  Google Scholar 

  14. Liu, D. and Yu, L., J. Heat Transfer, 2011, vol. 133, p. 031009.

    Article  Google Scholar 

  15. Idel’chik, I.E., Spravochnik po gidravlicheskim soprotivleniyam (A Reference Book on Hydraulic Resistance), Moscow: Mashinostroenie, 1992.

    Google Scholar 

  16. Kirillov, P.L., Spravochnik po teplogidravlicheskim raschetam (A Reference Book on Thermal-Hydraulic Calculations), Moscow: Energoatomizdat, 1990.

    Google Scholar 

  17. Paul, G., Philip, J., Raj, B., Das, P.K., and Manna, I., Int. J. Heat Mass Transfer, 2011, vol. 54, p. 3783.

    Article  Google Scholar 

  18. Tsvetkov, F.F. and Grigor’ev, B.A., Teplomassoobmen (Heat and Mass Transfer), Moscow: Moscow Institute of Power Engineering, 2005.

    Google Scholar 

  19. Petukhov, B.S., Teploobmen i soprotivlenie pri laminarnom techenii zhidkosti v trubakh (Heat Transfer and Resistance in Laminar Flow in Pipes), Moscow: Energiya, 1967.

    Google Scholar 

  20. Hosseini, S.Sh., Shahrjerdi, A., and Vazifeshenas, Y., Aust. J. Basic Appl. Sci., 2011, vol. 5, no. 10, p. 417.

    Google Scholar 

  21. Mahbubul, I.M., Saidur, R., and Amalina, M.A., Int. J. Heat Mass Transfer, 2012, vol. 55, p. 874.

    Article  Google Scholar 

  22. Rudyak, V.Ya., Dimov, S.V., Kuznetsov, V.V., and Bardakhanov, S.P., Dokl. Phys., 2013, vol. 58, no. 5, p. 173.

    Article  ADS  Google Scholar 

  23. Rudyak, V.Ya., Dimov, S.V., and Kuznetsov, V.V., Tech. Phys. Lett., 2013, vol. 39, no. 9, p. 779.

    Article  ADS  Google Scholar 

  24. Rudyak, V.Ya., Adv. Nanopart., 2013, vol. 2, p. 266.

    Article  Google Scholar 

  25. Rudyak, V.Ya., Belkin, A.A., Tomilina, E.A., and Egorov, V.V., Diffus. Defect Data, Pt. A, 2008, vols. 273–276, p. 566.

    Article  Google Scholar 

  26. Rudyak, V.Ya., Belkin, A.A., and Egorov, V.V., Tech. Phys., 2009, vol. 54, no. 8, p. 1102.

    Article  Google Scholar 

  27. Rudyak, V., Dimov, S., Krasnolutskii, S., and Ivanov, D., in Technical Proceedings of the 2013 NSTI Nanotechnology Conference and Expo (NSTI-Nanotech), Washington, United States, May 12–15, 2013, vol. 2, p. 370.

    Google Scholar 

  28. Metzner, A.B. and Reed, J.C., AIChE J., 1955, vol. 1, p. 434.

    Article  Google Scholar 

  29. Lee, S., Choi, S.U.S., Li, S., and Eastman, J.A., J. Heat Transfer, 1999, vol. 121, p. 280.

    Article  Google Scholar 

  30. Das, S.K., Putra, N., Theisen, P., and Roetzel, W., J. Heat Transfer, 2003, vol. 125, p. 567.

    Article  Google Scholar 

  31. Timofeeva, E.V., Smith, D.S., Yu, W., France, D.M., Singh, D., and Routbo, J.L., Nanotecnology, 2010, vol. 21, p. 215703.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Rudyak.

Additional information

Original Russian Text © A.V. Minakov, V.Ya. Rudyak, D.V. Guzei, A.S. Lobasov, 2015, published in Teplofizika Vysokikh Temperatur, 2015, Vol. 53, No. 2, pp. 256–263.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minakov, A.V., Rudyak, V.Y., Guzei, D.V. et al. Measurement of the heat transfer coefficient of a nanofluid based on water and copper oxide particles in a cylindrical channel. High Temp 53, 246–253 (2015). https://doi.org/10.1134/S0018151X15020169

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X15020169

Keywords

Navigation