Skip to main content
Log in

Study of the tensile strength of a liquid by molecular dynamics methods

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

The cavitation tensile strength of a liquid for simple materials by the example of argon has been studied using molecular dynamics methods. Results on the negative tensile pressure have been obtained within the temperature range from 85 to 135 K. The tensile strength of liquid argon organization has been studied theoretically using the Redlich-Kwong equation of state. These approaches are in good agreement. Comparison with the earlier results of other authors has been performed. The test of the determination of the tensile pressure by molecular dynamics methods for homogeneous systems will make it possible to analyze qualitatively the cavitation strength in multicomponent systems as well as during consideration of heterogeneous nucleation, where the theoretical studies are extremely troublesome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knapp, R., Daily, J., and Hammitt, F., Cavitation, New York: McGraw-Hill, 1970.

    Google Scholar 

  2. Temperly, H.N.V., Proc. Phys. Soc., 1947, vol. 59, p. 199.

    Article  ADS  Google Scholar 

  3. Trevena, D.H., J. Phys. D: Appl. Phys., 1975, vol. 8, p. L144.

    Article  ADS  Google Scholar 

  4. Fisher, J.C., J. Appl. Phys., 1948, vol. 19, p. 1062.

    Article  ADS  Google Scholar 

  5. Zel’dovich, Ya.B., Zh. Eksp. Teor. Fiz., 1942, vol. 12, no. 11, p. 525.

    Google Scholar 

  6. Bertholet, M., Ann. Chim. Phys., 1850, vol. 30, p. 232.

    Google Scholar 

  7. Briggs, L.J., J. Appl. Phys., 1955, vol. 26, p. 1001.

    Article  ADS  Google Scholar 

  8. Beams, J.W., Phys. Fluids, 1959, vol. 2, no. 1, p. 1.

    Article  ADS  Google Scholar 

  9. Vinogradov, V.E., Pavlov, P.A., and Baidakov, V.G., J. Chem. Phys., 2008, vol. 128, p. 234508.

    Article  ADS  Google Scholar 

  10. Kalikmanov, V.I., Wolk, J., and Kraska, T., J. Chem. Phys., 2008, vol. 128, p. 124506.

    Article  ADS  Google Scholar 

  11. Kuksin, A.Yu., Norman, G.E., and Stegailov, V.V., High Temp., 2007, vol. 45, no. 1, p. 37.

    Article  Google Scholar 

  12. Kuksin, A.Yu., Norman, G.E., Pisarev, V.V., Stegailov, V.V., and Yanilkin, A.V., High Temp., 2010, vol. 48, no. 4, p. 511.

    Article  Google Scholar 

  13. Ho-Young, Kwak and Panton, R.L., J. Phys. D: Appl. Phys, 1984, vol. 18, p. 647.

    Google Scholar 

  14. Redlich, O. and Kwong, J.N.S., Chem. Rev., 1949, vol. 44, no. 1, p. 233.

    Article  Google Scholar 

  15. Wang, D., Zeng, D., and Cai, Z., J. Chongqing Univ. (Engl. Ed.), 2002, vol. 1, no. 2, p. 60.

    Google Scholar 

  16. Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Oxford: Claredon, 1987.

    MATH  Google Scholar 

  17. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., and Haak, J.R., J. Chem. Phys., 1984, vol. 81, no. 8, p. 3684.

    Article  ADS  Google Scholar 

  18. Bo, Shi, PhD Dissertation, Los Angeles: University of California, United States, 2006.

  19. Cosden, I.A. and Lukes, J.R., J. Heat Transfer, 2011, vol. 133, no. 10, p. 101501.

    Article  Google Scholar 

  20. Vargaftik, N.B., Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei (A Reference Book on Thermal and Physical Properties of Gases and Liquids), Moscow: Nauka, 1972.

    Google Scholar 

  21. Bazhirov, T.T., Norman, G.E., and Stegailov, V.V., J. Phys.: Condens. Matter, 2008, vol. 20, no. 11, p. 114113.

    ADS  Google Scholar 

  22. Norman, G.E. and Stegailov, V.V., Mat. Model., 2012, vol. 24, no. 6, p. 3.

    MATH  Google Scholar 

  23. Kuksin, A.Yu., Norman, G.E., Pisarev, V.V., Stegailov, V.V., and Yanilkin, A.V., Phys. Rev. B, 2010, vol. 82, p. 174101.

    Article  ADS  Google Scholar 

  24. Rapaport, D.C., The Art of Molecular Dynamics Simulation, Cambridge: Cambridge University Press, 2004.

    Book  MATH  Google Scholar 

  25. Malyshev, V.L., Marin, D.F., Moiseeva, E.F., Gumerov, N.A., and Akhatov, I.Sh., Vestnik NNGU, 2014, no. 3, p. 126.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Malyshev.

Additional information

Original Russian Text © V.L. Malyshev, D.F. Marin, E.F. Moiseeva, N.A. Gumerov, I.Sh. Akhatov, 2015, published in Teplofizika Vysokikh Temperatur, 2015, Vol. 53, No. 3, pp. 423–429.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malyshev, V.L., Marin, D.F., Moiseeva, E.F. et al. Study of the tensile strength of a liquid by molecular dynamics methods. High Temp 53, 406–412 (2015). https://doi.org/10.1134/S0018151X15020145

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X15020145

Keywords

Navigation