Skip to main content
Log in

Application of Vacuum-Arc-Coatings Based on Titanium Aluminum Carbonitrides to Improve the Service Life of Metal-Cutting Tools

  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The results of the influence of the ratio of reaction gases when carbonitride coatings of the Ti–Al–C–N system are applied to the hard-alloy cutting tool on the physical-mechanical and operational properties are presented. During coating, a mixture of nitrogen gases N2 and acetylene C2H2 was fed into the chamber in the ratio 100 : 0, 90 : 10, 85 : 15, 80 : 20, 75 : 25, 70 : 30, 60 : 40, 40 : 60, 20 : 80, 0 : 100. The results of microhardness values showed that the highest microhardness value (2620HV0.05) has a tool coated with a reaction gas ratio of 40 : 60. According to the results of field tests, it was determined that a coated cutter applied at a gas ratio of 80 : 20 increases tool life by more than 20 times compared to an uncoated tool and more than 2.5 times compared to a TiAlN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Loladze, T.N., Prochnost’ i iznosostoikost’ rezhushchego instrumenta (Strength and Wear Resistance of Cutting Tool), Moscow: Mashinostroenie, 1982.

  2. Starkov, V.K., Fizika i optimizatsiya rezaniya materialov (Physics and Optimization of Material Cutting), Moscow: Mashinostroenie, 2009.

  3. Vereshchaka, A.S., Rabotosposobnost’ rezhushchego instrumenta s iznosostoikimi pokrytiyami (Efficiency of Cutting Tools with Wear-Resistant Coatings), Moscow: Mashinostroenie, 1993.

  4. Santecchia, E., Hamouda, A.M.S., Musharavati, F., Zalnezhad, E., Cabibbo, M., and Spigarelli, S., Ceram. Int., 2015, vol. 41, no. 9A, p. 10349. https://doi.org/10.1016/j.ceramint.2015.04.152

  5. Deng, J.X., Wu. Z., and Lian, Y.S., Mater. Sci. Forum, vols. 773–774, p. 414. www.scientific.net/MSF.773-774.414.

  6. Timerkaev, B.A., Kaleeva, A.A., Timerkaeva, D.B., and Saifutdinov, A.I., High Energy Chem., 2019, vol. 53, p. 390.

    Article  CAS  Google Scholar 

  7. Napalkov, O.G., Saifutdinov, A.I., Saifutdinova, A.A., and Timerkaev, B.A., High Energy Chem., 2021, vol. 55, p. 525.

    Article  CAS  Google Scholar 

  8. Saifutdinov, A.I., Sorokina, A.R., Boldysheva, V.K., Latypov, E.R., and Saifutdinova, A.A., High Energy Chem., 2022, vol. 56, no. 6, p. 477.

    Article  CAS  Google Scholar 

  9. Saifutdinov, A.I. and Sofronitskii, A.O., High Energy Chem., 2021, vol. 55, p. 228.

    Article  CAS  Google Scholar 

  10. Timerkaev, B.A., Shakirov, B.R., and Timerkaeva, D.B., High Energy Chem., 2019, vol. 53 no. 2. P. 162.

    Article  CAS  Google Scholar 

  11. Fairushin, I.I., Saifutdinov, A.I., and Sofronitskiy, A.O., High Energy Chem., 2020, vol. 54, p. 150.

    Article  CAS  Google Scholar 

  12. Timerkaev, B.A., Shakirov, B.R., Kaleeva, A.A., and Saifutdinov, A.I., High Energy Chem., 2021, vol. 55, p. 402.

    Article  CAS  Google Scholar 

  13. Maier, J., Prill, S., and Reichert, B., Solid State Ionics, 1988, vols. 28–30, p. 1465.

    Article  Google Scholar 

  14. Ovchinnikov, S.V., et al., The 9th International Conference on Modification on Materials with Particle Beams and Plasma Flows: Proceedings, Koval, N. and Ryabchikov, A., Eds., Tomsk, 2008, p. 472.

  15. Chu, X., Barnett, S.A., Wong, M.S., and Sproul, W.D., Surf. Coat. Technol., 1993, vol. 57, p. 13.

    Article  CAS  Google Scholar 

  16. Hovsepian, P.E., Lewis, D.B., and Munz, W.-D., Surf. Coat. Technol., 2000, vols. 133–134, p. 166.

    Article  Google Scholar 

  17. Nanostructured Coatings, Cavaleiro, A. and De Hosson, J.T.M., Eds., New York: Springer, 2006.

  18. Wang, B., Li, A., and Liu, G., J. Mech. Sci. Technol., 2020, vol. 34, no. 7, p. 2997. https://doi.org/10.1007/s12206-020-0631-4

    Article  Google Scholar 

  19. Sousa, V.F.C., Silva, F.J.G., Alexandre, R., Fecheira, J.S., and Silva, F.P.N., Wear, 2021, vol. 476, p. 203695. .https://doi.org/10.1016/j.wear.2021.203695

    Article  CAS  Google Scholar 

  20. Rashidi, M. Tamizifar, M., and Ali Boutorabi, S.M, Ceram. Int., 2020, vol. 46, no. 2, p. 1269. https://doi.org/10.1016/j.ceramint.2019.06.303

    Article  CAS  Google Scholar 

  21. Liu, K., Ma, F., Lou, M., Dong, M., Zhu, Y., Wang, Y., Wu, X., Liu, X., and Li, J., Surf. Topogr.: Metrol. Prop., 2021, vol. 9, no. 4, p. 045004. https://doi.org/10.1088/2051-672X/ac1046

    Article  Google Scholar 

  22. Yan, H., Tian, Q., Gao, D., and Yang, F., Surf. Coat. Technol., 2019, vol. 363, p. 61. https://doi.org/10.1016/j.surfcoat.2019.01.064

    Article  CAS  Google Scholar 

  23. Ramazanov, K.N., Vardanyan, E.L., Mukhamadeev, V.R., Mukhamadeev, I.R., and Maslov, A.A., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2022, vol. 16, no. 3, p. 412. https://doi.org/10.1134/S1027451022020355

    Article  CAS  Google Scholar 

  24. Tillmann, W., Grisales, D., Marin, Tovar, C., Contreras, E., Apel, D., Nienhaus, A., Stangier, D., and Lopes Dias, N.F., Tribol. Int., 2020, vol. 151, p. 106528. https://doi.org/10.1016/j.triboint.2020.106528

    Article  CAS  Google Scholar 

  25. Chen, S.N., Zhao, Y.M., Zhang, Y.F., Chen, L., Liao, B., Zhang, X., and Ouyang, X.P., Surf. Coat. Technol., 2021, vol. 411, p. 126886. https://doi.org/10.1016/j.surfcoat.2021.126886

    Article  CAS  Google Scholar 

  26. Zeng, Y., Qiu, Y., Mao, X., Tan, S., Tan, Z., Zhang, X., Chen, J., and Jiang, J., Thin Solid Films, 2015, vol. 584, p. 283. https://doi.org/10.1016/j.tsf.2015.02.068

    Article  CAS  Google Scholar 

  27. Vereshchaka, A.A. and Tabakov, V.P., Uprochn. Tekhnol. Pokryt., 2019, vol. 15, no. 9, p. 427.

    Google Scholar 

Download references

Funding

The work was supported by the grant of the President of the Russian Federation MK-4991.2022.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Mukhamadeev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramazanov, K.N., Vardanyan, E.L., Nazarov, A.Y. et al. Application of Vacuum-Arc-Coatings Based on Titanium Aluminum Carbonitrides to Improve the Service Life of Metal-Cutting Tools. High Energy Chem 57 (Suppl 1), S119–S124 (2023). https://doi.org/10.1134/S0018143923070366

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143923070366

Keywords:

Navigation