Skip to main content
Log in

Kinetics of Nonradiative Energy Transfer between Close-Packed InP/ZnS Nanocrystals

  • PHOTONICS
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

After pulsed excitation of close-packed colloidal quantum dots, the resulting excitons begin to migrate over individual nanoparticles due to the effect of Förster nonradiative energy transfer. Due to inhomogeneous broadening, this leads to a dependence of the peak position of the time-resolved fluorescence spectrum on time. In this work, a formula for the initial rate of this process has been derived. Furthermore, an estimate of the characteristic relaxation time for the hypothetical equilibrium Boltzmann distribution of excitons over the particles of the ensemble has been obtained. For typical inhomogeneous broadenings, this time was found to be so long that, in fact, equilibrium cannot be reached. The theoretical results obtained have been tested on colloidal nanoclusters and thin films of InP/ZnS nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Kagan, C.R., Lifshitz, E., Sargent, E.H., and Talapin, D.V., Science, 2016, vol. 353, p. 885.

    Article  CAS  Google Scholar 

  2. Lee, E.M.Y., Tisdale, W.A., and Willard, A.P., J. Vac. Sci. Technol., A, 2018, vol. 36, p. 068501.

    Article  Google Scholar 

  3. Akselrod, G.M., Prins, F., Poulikakos, L.V., Lee, E.M.Y., Weidman, M.C., Mork, A.J., Willard, A.P., Bulovic, V., and Tisdale, W.A., Nano Lett., 2014, vol. 14, p. 3556.

    Article  CAS  Google Scholar 

  4. Poulikakos, L.V., Prins, F., and Tisdale, W.A., J. Phys. Chem. C, 2014, vol. 118, p. 7894.

    Article  CAS  Google Scholar 

  5. Miyazaki, J. and Kinoshita, S., Phys. Rev. B: Condens. Matter, 2012, vol. 86, p. 035303.

    Article  Google Scholar 

  6. Miyazaki, J. and Kinoshita, S., J. Phys. Soc. Jpn., 2012, vol. 81, p. 074708.

    Article  Google Scholar 

  7. Thuy, U.T.D., Thuy, P.T., Liem, N.Q., Li, L., and Reiss, P., Appl. Phys. Lett., 2010, vol. 96, p. 073102.

    Article  Google Scholar 

  8. Tovstun, S.A. and Razumov, V.F., High Energy Chem., 2015, vol. 49, p. 352.

    Article  CAS  Google Scholar 

  9. Tovstun, S.A. and Razumov, V.F., J. Nanopart. Res., 2017, vol. 19, p. 8.

    Article  Google Scholar 

  10. Tovstun, S.A., High Energy Chem., 2016, vol. 50, p. 327.

    Article  CAS  Google Scholar 

  11. Kawski, A., Kukliński, B., and Bojarski, P., Chem. Phys., 2009, vol. 359, p. 58.

    Article  CAS  Google Scholar 

  12. Mićić, O.I., Ahrenkiel, S.P., and Nozik, A.J., Appl. Phys. Lett., 2001, vol. 78, p. 4022.

    Article  Google Scholar 

  13. Martyanov, T.P., Tovstun, S.A., Vasil’ev, S.G., Martyanova, E.G., Spirin, M.G., Kozlov, A.V., Klimenko, L.S., Brichkin, S.B., and Razumov, V.F., J. Nanopart. Res., 2022, vol. 24, p. 129.

    Article  CAS  Google Scholar 

  14. Talapin, D.V., Gaponik, N., Borchert, H., Rogach, A.L., Haase, M., and Weller, H., J. Phys. Chem. B, 2002, vol. 106, p. 12659.

    Article  CAS  Google Scholar 

  15. Tovstun, S.A., Ivanchikhina, A.V., Spirin, M.G., Martyanova, E.G., and Razumov, V.F., J. Chem. Phys., 2020, vol. 153, p. 084108.

    Article  CAS  Google Scholar 

  16. Yu, M. and Van Orden, A., Phys. Rev. Lett., 2006, vol. 97, p. 237402.

    Article  Google Scholar 

  17. Brichkin, S.B., Tovstun, S.A., Spirin, M.G., and Razumov, V.F., High Energy Chem., 2017, vol. 51, p. 455.

    Article  CAS  Google Scholar 

  18. Ritzoulis, G., Papadopoulos, N., and Jannakoudakis, D., J. Chem. Eng. Data, 1986, vol. 31, p. 146.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 21-73-20245.

Author information

Authors and Affiliations

Authors

Contributions

D.N. Pevtsov: synthesis, washing, and primary characterization of nanoparticles. D.K. Yuldasheva and A.V. Gadomska: preparation of nanoclusters and films from nanoparticles, measurement of their optical properties. S.A. Tovstun: theory.

Corresponding author

Correspondence to S. A. Tovstun.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Tatikolov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuldasheva, D.K., Pevtsov, D.N., Gadomska, A.V. et al. Kinetics of Nonradiative Energy Transfer between Close-Packed InP/ZnS Nanocrystals. High Energy Chem 56, 399–410 (2022). https://doi.org/10.1134/S0018143922060182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143922060182

Keywords:

Navigation