Skip to main content
Log in

Laser Flash Photolysis of Colloidal Indium Phosphide Quantum Dots

  • PHOTONICS
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Colloidal quantum dots of indium phosphide and indium phosphide with a thin zinc sulfide shell have been synthesized, which have spectral absorption maxima of exciton peaks at 584 and 603 nm, respectively. For these particles, the induced absorption relaxation kinetics were obtained by flash photolysis (in the time range from ~50 fs to 0.5 ns), and the luminescence decay kinetics after pulsed excitation were also measured (in the time range from ~0.1 to ~130 ns). A comparison of these kinetics in the region of their overlap showed that the transient absorption decays much more slowly than the luminescence. In accordance with the concepts available in the literature, this behavior can be explained by the fact that the hole formed as a result of excitation is captured by surface traps, thereby blocking radiative recombination but having almost no effect on the induced absorption, which is mainly due to the electron formed during excitation. The unshelled particles obtained in this study, having a lower fluorescence quantum yield, exhibit faster hole trapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Guzelian, A.A., Katari, J.E.B., Kadavanich, A.V., Banin, U., Hamad, K., Juban, E., and Alivisatos, A.P., J. Phys. Chem., 1996, vol. 100, p. 7212.

    Article  CAS  Google Scholar 

  2. Mićić, O.I., Jones, K.M., Cahill, A., and Nozik, A.J., J. Phys. Chem. B, 1998, vol. 102, p. 9791.

    Article  Google Scholar 

  3. Mićić, O.I., Sprague, J., Lu, Z., and Nozik, A.J., Appl. Phys. Lett., 1996, vol. 68, p. 3150.

    Article  Google Scholar 

  4. Clarke, M.T., Viscomi, F.N., Chamberlain, T.W., Hondow, N., Adawi, A.M., Sturge, J., Erwin, S.C., Bouillard, J.-S.G., Tamang, S., and Stasiuk, G.J., Commun. Chem., 2019, vol. 2, p. 36.

    Article  Google Scholar 

  5. Shen, C., Zhu, Y., Li, Z., Li, J., Tao, H., Zou, J., Xu, X., and Xua, G., J. Mater. Chem. C, 2021, vol. 9, p. 9599.

    Article  CAS  Google Scholar 

  6. Ermolaev, V.L., Opt. Spectrosc., 2018, vol. 125, p. 256.

    Article  CAS  Google Scholar 

  7. Yang, W., Yang, Y., Kaledin, A.L., He, S., Jin, T., McBride, J.R., and Lian, T., Chem. Sci., 2020, vol. 11, p. 5779.

    Article  CAS  Google Scholar 

  8. Janke, E.M., Williams, N.E., She, C., Zherebetskyy, D., Hudson, M.H., Wang, L., Gosztola, D.J., Schaller, R.D., Byeongdu, L., Sun, C., Engel, G.S., and Talapin, D.V., J. Am. Chem. Soc., 2018, vol. 140, p. 15791.

    Article  CAS  Google Scholar 

  9. Spirin, M.G., Brichkin, S.B., Gak, V.Y., and Razumov, V.F., J. Lumin., 2000, vol. 226, p. 117297.

    Article  Google Scholar 

  10. Xi, L., Cho, D.-Y., Besmehn, A., Duchamp, M., Grützmacher, D., and Lam, Y.M., Kardynał, B.E., Inorg. Chem., 2016, vol. 55, p. 8381.

    Article  CAS  Google Scholar 

  11. McVey, B.F.P., Swain, R.A., Lagarde, D., Tison, Y., Martinez, H., Chaudret, B., Nayral, C., and Delpech, F., J. Chem. Phys., 2019, vol. 151, p. 191102.

    Article  CAS  Google Scholar 

  12. Brichkin, S.B., Spirin, M.G., Tovstun, S.A., Gak, V.Y., Mart’yanova, E.G., and Razumov, V.F., High Energy Chem., 2016, vol. 50, p. 395.

    Article  CAS  Google Scholar 

  13. Brouwer, A.M., Pure Appl. Chem., 2011, vol. 83, p. 2213.

    Article  CAS  Google Scholar 

  14. Kawski, A., Kukliński, B., and Bojarski, P., Chem. Phys., 2009, vol. 359, p. 58.

    Article  CAS  Google Scholar 

  15. Tovstun, S.A., High Energy Chem., 2016, vol. 50, p. 327.

    Article  CAS  Google Scholar 

  16. Mićić, O.I., Ahrenkiel, S.P. and Nozik, A.J., Appl. Phys. Lett., 2001, vol. 78, p. 4022.

    Article  Google Scholar 

  17. Rumbles, G., Selmarten, D.C., Ellingson, R.J., Blackburn, J.L., Yu, P., Smith, B.B., Mićić, O.I., and Nozik, A.J., J. Photochem. Photobiol., A, 2001, vol. 142, p. 187.

    Article  CAS  Google Scholar 

  18. Ellingson, R.J., Blackburn, J.L., Yu, P., Rumbles, G., Mićić, O.I., and Nozik, A.J., J. Phys. Chem. B, 2002, vol. 106, p. 7758.

    Article  CAS  Google Scholar 

  19. Ellingson, R.J., Blackburn, J.L., Nedeljkovic, J., Rumbles, G., Jones, M., Fu, H., and Nozik, A.J., Phys. Rev. B: Condens. Matter, 2003, vol. 67, p. 075308.

    Article  Google Scholar 

  20. Blackburn, J.L. Ellingson, R.J., Mićić, O.I., and Nozik, A.J., J. Phys. Chem. B, 2003, vol. 107, p. 102.

    Article  CAS  Google Scholar 

  21. Zhang, B., Wang, X., Wang, D., Tang, J., Fang, X., Fang, D., Wang, X., Chen, R., He, T., and Wei, Z., J. Phys. Chem. C, 2019, vol. 123, p. 27207.

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 21-73-20245, as well as on the topic of the state task AAAA-A19-119070790003-7. Femtosecond optical measurements were carried out using the research facilities of the Semenov Federal Research Center of Chemical Physics of the Russian Academy of Sciences (nos. 1440743, 506694).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Pevtsov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pevtsov, D.N., Aybush, A.V., Gostev, F.E. et al. Laser Flash Photolysis of Colloidal Indium Phosphide Quantum Dots. High Energy Chem 56, 326–332 (2022). https://doi.org/10.1134/S0018143922050149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143922050149

Keywords:

Navigation