Skip to main content
Log in

Radiation Modification of Adhesion Properties of Waste Plastics

  • RADIATION CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Changes in the adhesive characteristics of polyethylene, polypropylene, polystyrene, polyethylene terephthalate, polyvinyl chloride, and polycarbonate films and powders as a result of irradiation with 3-MeV electrons in air have been studied. Radiolytic oxidation forms polar groups on the surface of the plastics and thus increases the surface hydrophilicity. At a dose of 100 kGy, the contact angle decreases by 6° for polyvinyl chloride and by 20° for polyethylene. The radiation-induced improvement in adhesion is mainly due to an increase in the polar component of surface energy. For polypropylene, the adhesion increases by a factor of 2.5. The use of irradiated polypropylene powder in epoxy compositions improves their stress–strain characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. The New Plastics Economy: Rethinking the Future of Plastics, World Economic Forum, 2017. http://www3. weforum.org/docs/WEF_The_New_Plastics_Economy.pdf.

  2. Geyer, R., Jambeck, J.R., and Law, K.L., Sci. Adv., 2017, vol. 3, Article e1700782. https://doi.org/10.1126/sciadv.1700782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ponomarev, A.V., High Energy Chem., 2020, vol. 54, no. 3, p. 194. https://doi.org/10.1134/S0018143920030121

  4. Gorbarev, I.N., Vlasov, S.I., Chulkov, V.N., Bludenko, A.V., and Ponomarev, A.V., Radiat. Phys. Chem., 2019, vol. 158, p. 64. https://doi.org/10.1016/j.radphyschem.2019.01.016

    Article  CAS  Google Scholar 

  5. Chulkov, V.N., Bludenko, A.V., and Ponomarev, A.V., High Energy Chem., 2019, vol. 53, no. 5, p. 365. https://doi.org/10.1134/S0018143919040052

    Article  Google Scholar 

  6. Ponomarev, A.V. and Ershov, B.G., Prot. Met. Phys. Chem. Surf., 2018, no. 6, p. 1032.

  7. Kabanov, V.Ya., Feldman, V.I., Ershov, B.G., Polikarpov, A.I., Kiryukhin, D.P., and Apel’ P.Yu., High Energy Chem., 2009, vol. 43, no. 1, p. 1. https://doi.org/10.1134/S0018143909010019

  8. Schaefer, C.E., Kupwade-Patil, K., Ortega, M., Soriano, C., Büyüköztürk, O., White, A.E., and Short, M.P., Waste Manage., 2018, vol. 71, p. 426. https://doi.org/10.1016/j.wasman.2017.09.033

    Article  CAS  Google Scholar 

  9. Saikia, N., Constr. Build. Mater., 2012, vol. 34, p. 385. https://doi.org/10.1016/j.conbuildmat.2012.02.066

    Article  Google Scholar 

  10. Ochoa-Putman, C. and Vaidya, U.K., Appl. Sci. Manuf., 2011, vol. 42, no. 8, p. 906. https://doi.org/10.1016/j.compositesa.2011.03.019

    Article  Google Scholar 

  11. Guven, O., Recycling of Polymer Wastes by Radiation—Report of IAEA Technical Meeting, Vienna: IAEA, 2019, p. 99.

    Google Scholar 

  12. Shapagin, A.V., Budylin, N.Y., Chalykh, A.E., Solodilov, V.I., Korokhin, R.A., and Poteryaev, A.A., Polymers, 2021, vol. 13, no. 1, p. 35. https://doi.org/10.3390/polym13010035

    Article  CAS  Google Scholar 

  13. Brantseva, T.V., Solodilov, V.I., Antonov, S.V., Gorbunova, I.Y., Korohin, R.A., Shapagin, A.V., and Smirnova, N.M., J. Appl. Polym. Sci., 2016, vol. 133, no. 41, p. 44081. https://doi.org/10.1002/app.44081

    Article  CAS  Google Scholar 

  14. Korokhin, R.A., Shapagin, A.V., Solodilov, V.I., Zvereva, U.G., Solomatin, D.V., and Gorbatkina, Y.A., Polym. Bull., 2021, vol. 78, no. 3, p. 1573. https://doi.org/10.1007/s00289-020-03174-8

    Article  CAS  Google Scholar 

  15. Korokhin, R.A., Solodilov, V.I., Zvereva, U.G., Solomatin, D.V., Gorbatkina, Y.A., Shapagin, A.V., Lebedeva, O.V., and Bamborin, M.Y., Polym. Bull., 2020, vol. 77, no. 4, p. 2039. https://doi.org/10.1007/s00289-019-02841-9

    Article  CAS  Google Scholar 

  16. Ponomarev, A.V., Chulkov, V.N., and Bludenko, A.V., Recycling of Polymer Wastes by Radiation—Report of IAEA Technical Meeting, Vienna: IAEA, 2019, p. 89.

    Google Scholar 

  17. Owens, D.K. and Wendt, R.C., J. Appl. Polym. Sci., 1969, vol. 13, no. 8, p. 1741. https://doi.org/10.1002/app.1969.070130815

  18. Kloubek, J., Adv. Colloid Interface Sci., 1992, vol. 38, p. 99. https://doi.org/10.1016/0001-8686(92)80044-x

    Article  CAS  Google Scholar 

  19. Woods, R.J. and Pikaev, A.K., Applied Radiation Chemistry: Radiation Processing, New York: Wiley–Interscience, 1994.

    Google Scholar 

  20. Ponomarev, E.M., Kholodkova, A.S., and Vcherashnaya, M.V., Mikhailova, IAEA Consultancy Meeting on Enhancing the Recycling of Polymer Waste through Radiation Technology Approaches, Vienna: IAEA, 2020, p. 10.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Center for Shared Use of Instrumental Research Methods at the Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences for the equipment provided.

Funding

The work was performed within the framework of the Russian Academy of Sciences project no. AAAA-A18-118011190130-0 and under the IAEA international program “Recycling of Polymer Waste for Structural and Non-Structural Materials by Using Ionizing Radiation.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ponomarev.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vcherashnyaya, A.S., Mikhailova, M.V., Shapagin, A.V. et al. Radiation Modification of Adhesion Properties of Waste Plastics. High Energy Chem 55, 295–299 (2021). https://doi.org/10.1134/S0018143921040159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143921040159

Keywords:

Navigation