Skip to main content
Log in

Effect of the Plasma Gas Composition on the Properties of Graphene

  • PLASMA CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Theoretical and experimental studies of the synthesis of graphene with the introduction of nitrogen into a jet of helium plasma generated by a direct-current plasma torch with a power of to 40 kW at a pressure of 350 Torr have been performed. A propane–butane mixture was used as a source of carbon. As found by scanning microscopy, Raman scattering, and synchronous thermal analysis, the morphology of the synthesis products changed from graphene flakes to carbon nanotubes upon the addition of nitrogen in a ratio of 1 : 1.22 to the jet of helium plasma. The numerical modeling of the process showed that cyanopolyyne molecules, HC9N and HC11N, containing many carbon atoms appeared instead of C60 and C80 in the jets of helium upon the addition of nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ivanovskii, A.L., Usp. Khim., 2012, vol. 81, p. 571.

    Article  Google Scholar 

  2. Han, Y., Evans, J., Engstfeld, A.K., Juergen, Behm, R., Tringides, M.C., Hupalo, M., Lin, H.-Q., Huang, L., Ho, K.-M., Appy, D., Thiel, P.A., and Wang, C.-W., Prog. Surf. Sci., 2015, vol. 90, no. 4, p. 397.

    Article  Google Scholar 

  3. Nigar, S., Zhou, Z., Wang, H., and Imtiaze, M., RSC Adv., 2017, vol. 7, p. 51 546.

    Article  Google Scholar 

  4. Bundaleska, N., Dias, A., Henriques, J., Felizardo, E., Abrashev, M., Kissovski, J., Botelho do Rego, A.M., Ferraria, A.M., and Tatarova, E., Phys. Chem. Chem. Phys., 2020, vol. 22, no. 22, p. 4772.

    Article  Google Scholar 

  5. Santhosh, N.M., Filipič, G., Tatarova, E., Baranov, O., Kondo, O., Sekine, M., Hori, M., Ostrikov, K., and Cvelbar, U., Micromachines, 2018, vol. 9, p. 565.

    Article  Google Scholar 

  6. Nguyen, H.B. and Nguyen, V., Adv. Nat. Sci: Nanosci. Nanotechnol., 2016, vol. 7, p. 023 002.

    Google Scholar 

  7. Abdalla, S., Al-Marzouki, F., and Al-Ghamdi, A.A., Abdel-Daiem, A., Nanoscale Res. Lett., 2015, vol. 10, no. 1, p. 358.

    Article  CAS  Google Scholar 

  8. Shavelkina, M.B. and Amirov, R.Kh., Nanosyst.Phys. Chem. Math., 2019, vol. 10, no. 1, p. 102.

    CAS  Google Scholar 

  9. Shavelkina, M.B., Filimonova, E.A., and Amirov, R.Kh., Plasma Sources Sci. Technol., 2020, vol. 29, p. 2.

    Article  Google Scholar 

  10. Shavelkina, M.B., Ivanov, P.P., Bocharov, A.N., and Amirov, R.Kh., J. Phys. D: Appl. Phys., 2019, vol. 52, no. 49, p. 495 202.

    Article  Google Scholar 

  11. Ivanov, V., Nagy, J.B., Lambin, P., Lukas, A., Zhang, X.B., Zhang, X.F., Bernaerts, D., Van Tendeloo, G., Amelinckx, S., and Van Landuyt, J., Chem. Phys. Lett., 1994, vol. 223, p. 329.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project nos. 19-08-00081, 18-08-00040, and 18-08-000306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Shavelkina.

Additional information

Translated by V. Makhlyarchuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shavelkina, M.B., Ivanov, P.P., Bocharov, A.N. et al. Effect of the Plasma Gas Composition on the Properties of Graphene. High Energy Chem 54, 374–377 (2020). https://doi.org/10.1134/S0018143920050136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143920050136

Keywords:

Navigation