Skip to main content
Log in

Influence of Monomers on the Decomposition Rate of Polymerization Initiators: Quantum-Chemical Calculation of Optimal Structures of Forming Complexes and Their Degradation and Polymerization Initiation Mechanisms

  • RADIATION CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Using EPR spectroscopy, it has been established that monomers affect the decomposition rate of their polymerization initiators by forming complexes with them. Several structures of the complexes have been optimized, and their decomposition mechanisms, the activation energies of the chain initiation and propagation reactions, and the heat of polymerization have been determined by means of quantum chemistry methods. In the absence of radical inhibitors (evacuation), the polymerization proceeds with high efficiency (98%) at room temperature without stimulation of the system with external energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Bauer, C., Becker, K., Herrman, T., Lilge, D., and Bush, M., Macromol. Chem. Phys., 2010, vol. 211, no. 5, p. 510.

    Article  CAS  Google Scholar 

  2. Semchikov, Yu.D., Vysokomolekulyarnye soedineniya (Macromolecular Compounds), Moscow: Akademiya, 2005.

  3. Ewart, S.W., Karjala, T.W., and Demirors, M., J. Polym. Sci., Part A: Polym. Chem., 2017, vol. 55, no. 5, p. 861.

    Article  CAS  Google Scholar 

  4. Korolev, G.V., Berezin, M.P., Grachev, V.P., and Zyuzin, I.N., Polym. Sci., Ser. A, 2007, vol. 49, no. 3, p. 262.

    Article  Google Scholar 

  5. Korolev, G.V., Berezin, M.P., and Grachev, V.P., Polym. Sci., Ser. A, 2007, vol. 49, no. 6, p. 617.

    Article  Google Scholar 

  6. Bol'shakov, A.I. and Kiryukhin, D.P., Vysokomol. Soedin., Ser. B, 2010, vol. 52, no. 6, p. 115.

    CAS  Google Scholar 

  7. Gordon, D.A. and Mikhaylov, A.I., e-Polymer, 2015, vol. 6, p. 385.

  8. Gordon, D.A., Estrina, G.A., Bol’shakov, A.I., and Mikhailov, A.I., High Energy Chem., 2015, vol. 49, no. 3, p. 138.

    Article  CAS  Google Scholar 

  9. Bolshakov, A.I., Kuzina, S.I., and Kiryukhin, D.P., Russ. J. Phys. Chem. A, 2017, vol. 91, no. 3, p. 482.

    Article  CAS  Google Scholar 

  10. Kuzina, S.I., Kulikov, A.V., Demidov, S.V., Moravskii, A.A., and Mikhailov, A.I., Russ. J. Phys. Chem. A, 2005, vol. 79, no. 5, p. 681.

    CAS  Google Scholar 

  11. Gordon, D.A., Kichigina, G.A., and Estrina, G.A., High Energy Chem., 2018, vol. 52, no. 1, p. 71.

    Article  CAS  Google Scholar 

  12. Bol'shakov, A.I. and Kiryukhin, D.P., Polym. Sci., Ser. A, 2007, vol. 49, no. 9, p. 975.

    Article  Google Scholar 

  13. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision D.01, Wallingford, CT: Gaussian, p. 2013.

  14. Keith, T.A., AIMA11 (Version 15.05.18), Overland Park, KS: TK Gristmill Software, 2015.

    Google Scholar 

  15. Zaitsev, S.Yu. and Zaitseva, V.V., Mnogofunktsional’nye monomery. Sintez i polimerizatsiya (Multifunctional Monomers: Synthesis and Polymerization), Donetsk: Nord Komp’yuter, 2003.

  16. Zaitseva, V.V. and Tyurina, T.G., Nauchn. Tr. DonNTU, Ser. Khim. Khim. Tekhnol., 2008, no. 137, p. 70.

  17. Pretsch, E., Bühlmann, P., and Affolter, C., Structure Determination of Organic Compounds, Berlin: Springer, 2000.

    Book  Google Scholar 

  18. Bader, R.F.W., Atoms in Molecules: A Quantum Theory, Oxford: Clarendon, 1990.

    Google Scholar 

  19. Espinosa, E., Molins, E., and Lecomte, C., Chem. Phys. Lett., 1998, p. 170.

  20. Denisova, T.G. and Emel’yanova, N.S., Kinet. Catal., 2005, vol. 46, no. 6, p. 805.

    Article  CAS  Google Scholar 

  21. Crystalline Olefin Polymers: Structure and Properties, Raff, R.A.V and Doak, K.W., Eds., New York: Interscience, 1964.

  22. Evans, A.G. and Tyrrall, E., J. Polym. Sci., 1947, vol. 2, no. 4, p. 387.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank T.N. Rudneva and Yu.V. Baskakova for recording the IR spectra and A.V. Kulikov for EPR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Gordon.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bol’shakov, A.I., Gordon, D.A., Emel’yanova, N.S. et al. Influence of Monomers on the Decomposition Rate of Polymerization Initiators: Quantum-Chemical Calculation of Optimal Structures of Forming Complexes and Their Degradation and Polymerization Initiation Mechanisms. High Energy Chem 53, 356–364 (2019). https://doi.org/10.1134/S0018143919050047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143919050047

Keywords:

Navigation