Skip to main content
Log in

Spectral-kinetic characteristics of lutetium-containing tetrapyrroles

  • Processes and Materials for Optical Information Systems
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The spectral-kinetic characteristics of the triplet states of tetraphenylporphyrin and triphenylcorrole complexes with an aminopolycarboxylic acid (EDTA or DTPA) or its complex with lutetium as a substitute and the corrole complex with Ga(III) as the central atom have been studied. The transient absorption spectra of the complexes in the triplet excited state (effective maximum at 460–470 nm) and the rate constants of triplet quenching by oxygen at room temperature (2 × 108–7 × 108 L mol−1 s−1) have been measured. The quantum yields (0.44–0.55) and the molar absorption coefficients of the triplet state (log ɛT = 4.81–4.89) have been determined for some of the derivatives. The efficiency of population and deactivation kinetics of the triplet states are determined by the structure of the porphyrinoid, in particular by the central ion, and depends slightly on the presence of a heavy atom at the periphery of the molecule. Possible uses of the new compounds for designing various optical devices are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bialkowski, B., Stepanenko, Y., Nejbauer, M., Radzewicz, C., and Waluka, J., J. Photochem. Photobiol., A, 2012, vol. 234, p. 100.

    Article  CAS  Google Scholar 

  2. Mataga, N., Chosrowjan, H., and Taniguchi, S., J. Photochem. Photobiol., 2005, vol. 6, p. 37.

    Article  CAS  Google Scholar 

  3. Baskin, J.S., Yu, H.Z., and Zewail, A.H., J. Phys. Chem. A, 2002, vol. 106, p. 9837.

    Article  CAS  Google Scholar 

  4. Johnson, W. and Kay, I.T., J. Chem. Soc., 1965, p. 1620.

    Google Scholar 

  5. Gross, Z., Galili, N., and Saltsman, I., Angew. Chem., Int. Ed., 1999, vol. 38, p. 1427.

    Article  CAS  Google Scholar 

  6. Aviv, I. and Gross, Z., Chem. Commun., 2007, p. 1987.

    Google Scholar 

  7. Mahammed, A. and Gross, Z., J. Inorg. Biochem., 2002, vol. 88, p. 305.

    Article  CAS  Google Scholar 

  8. Ventura, B., Esposti, A.D., Koszarna, B., Gryko, D.T., and Flamigni, L., New J. Chem., 2005, vol. 29, p. 1559.

    Article  CAS  Google Scholar 

  9. Ding, T., Aleman, E.A., Modarelli, D.A., and Ziegler, C.J., J. Phys. Chem. A, 2005, vol. 109, p. 7411.

    Article  CAS  Google Scholar 

  10. Buckley, H.L., Anstey, M.R., Gryko, D.T., and Arnold, J., Chem. Commun., 2013, vol. 49.

  11. Semenishyn, N. and Gross, Z., Dalton Trans., 2013, vol. 42, p. 3775.

    Article  CAS  Google Scholar 

  12. Semenishyn, N., Rusakova, N., Mazepa, A., and Korovin, Yu., Macroheterocycles, 2009, vol. 2, p. 57.

    CAS  Google Scholar 

  13. Harriman, A., J. Chem. Soc., Faraday Trans., 1980, vol. 76, p. 1978.

    Article  CAS  Google Scholar 

  14. Pozdnyakov, I.P., Plyusnin, V.F., Grivin, V.P., Vorobyev, D.Yu., Bazhin, N.M., and Vauthey, E., J. Photochem. Photobiol., A, 2006, vol. 182, p. 75.

    Article  CAS  Google Scholar 

  15. Clarke, R.H. and Hochstrasser, R.M., J. Mol. Spectrosc., 1969, vol. 32, p. 309.

    Article  CAS  Google Scholar 

  16. Hurley, J.K., Sinai, N., and Linschitz, H., Photochem. Photobiol., 1983, vol. 38, p. 9.

    Article  CAS  Google Scholar 

  17. Battino, R., in Solubility Data Series, vol. 7: Oxygen and Ozone, Battino, R, Ed., Oxford: Pergamon, 1981, p. 55.

  18. Kuznetsova, R.T., Ermolina, E.G., Gadirov, R.M., Maier, G.V., Semenishin, N.N., Rusakova, N.V., and Korovin, Yu.V., High Energy Chem., 2010, vol. 44, no. 2, p. 134.

    Article  CAS  Google Scholar 

  19. Bulgakov, R.A., Kuznetsova, N.A., Dolotova, O.V., Solovieva, L.I., Mack, J., Chidawanyika, W.J., Kaliya, O.L., and Nyokong, T., J. Porph. Phthal, 2012, vol. 16, p. 1217.

    Article  CAS  Google Scholar 

  20. Bulgakov, R.A., Kuznetsova, N.A., Dolotova, O.V., Shevchenko, E.N., Plyutinskaya, A.D., Kaliya, O.L., and Nyokong, T., Macroheterocycles, 2012, vol. 5, p. 350.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Ermolina.

Additional information

Original Russian Text © E.G. Ermolina, R.T. Kuznetsova, I.P. Pozdnyakov, V.F. Plyusnin, S.S. Smola, N.N. Semenishin, 2014, published in Khimiya Vysokikh Energii, 2014, Vol. 48, No. 4, pp. 312–318.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermolina, E.G., Kuznetsova, R.T., Pozdnyakov, I.P. et al. Spectral-kinetic characteristics of lutetium-containing tetrapyrroles. High Energy Chem 48, 269–275 (2014). https://doi.org/10.1134/S0018143914040043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143914040043

Keywords

Navigation