Skip to main content
Log in

Evaluating Tensile Fractures in Rigid Clasts with Very High Aspect Ratio

  • Published:
Geotectonics Aims and scope

Abstract

We investigate how a highly elliptical and mechanically rigid clast embedded in an infinite rock mass respond to the far-field stresses. The numerical analysis is carried out on elliptical clasts with aspect ratios ranging from 13.5 to 58.5, oriented at a right angle to the maximum far-field stress. A 2D plane strain model has been adopted to decipher the states of stress inside elliptical clasts. We argue that the tensile stress within the clasts gets enhanced and develops systematic mode-I (tensile) fractures within it as the far-field stress increases. We conclude that the intra-clast tensile stress decreases with increasing clast ellipticity, i.e., tensile fractures develop more easily within clasts with higher aspect ratios (~>20) while a higher far field tensile stress is required to fracture clasts with lower aspect ratios. We also interpret that stress enhancement is independent of the clast area and inter-focii distance of the clast, whilst the aspect ratio of the clast is found to be crucial for the development of tensile fractures within the elliptical clast for a constant material property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. S. Acharyya and T. K. Mondal, “Stress enhanced tensile fractures in elliptical clast in conglomerate,” J. Struct. Geol. 122, 81‒88 (2019). https://doi.org/10.1016/j.jsg.2019.02.001

    Article  Google Scholar 

  2. J. Angelier and B. Colletta, “Tension fractures and extensional tectonics,” Nature 30, 49–51 (1983).

    Article  Google Scholar 

  3. M. Antonellini, L. D. Sole, and P. N. Mollema, “Chert nodules in pelagic limestones as paleo-stress indicators: 3D geomechanical analysis,” J. Struct. Geol. 132, 103‒979 (2020). https://doi.org/10.1016/j.jsg.2020.103979

    Article  Google Scholar 

  4. A. Aydin, “Fractures, faults, and hydrocarbon entrapment, migration and flow,” Mar. Petrol. Geol. 17 (7), 797–814 (2000). https://doi.org/10.1016/S0264-8172(00)00020-9

    Article  CAS  Google Scholar 

  5. S. Bergbauer and S. J. Martel, “Formation of joints in cooling plutons,” J. Struct. Geol. 21 (7), 821‒835 (1999). https://doi.org/10.1016/S0191-8141(99)00082-6

    Article  Google Scholar 

  6. S. Bergbauer, S. J. Martel, and C. F. Hieronymus, “Thermal stress evolution in cooling pluton environments of different geometries,” Geophys. Res. Lett. 25 (5), 707–710 (1998). https://doi.org/10.1029/98GL00047

    Article  Google Scholar 

  7. J. G. Crider, “The initiation of brittle faults in crystalline rock,” J. Struct. Geol. 77, 159–174 (2015). https://doi.org/10.1016/j.jsg.2015.05.001

    Article  Google Scholar 

  8. A. Eidelman and Z. Reches, “Fractured Clasts—A new stress indicator,” Geology 20, 307–310 (1992). https://doi.org/10.1130/0091-7613(1992)020<0307:FPANSI>2.3.CO;2

    Article  Google Scholar 

  9. J. D. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” Proc. R. Soc. London, Ser. A 241, 376–395 (1957). https://doi.org/10.1098/rspa.1957.0133

    Article  Google Scholar 

  10. E. Flodin and A. Aydin, “Faults with asymmetric damage zones in sandstone, Valley of Fire State Park, southern Nevada,” J. Struct. Geol. 26 (5), 983‒988 (2004). https://doi.org/10.1016/j.jsg.2003.07.009

    Article  Google Scholar 

  11. J. C. Jaeger, N. G. W. Crook, and R. W. Zimmerman, Fundamentals of Rock Mechanics (Blackwell Publ. Ltd., NY, USA, 2007).

    Google Scholar 

  12. T. W. Lambe and R. V. Whitman, Soil Mechanics (Wiley, NY, USA, 1969).

    Google Scholar 

  13. S. E. Laubach, J. Lamarche, B. D. M. Gauthier, et al., “Spatial arrangement of faults and opening-mode fractures,” J. Struct. Geol. 108, 2‒15 (2018). https://doi.org/10.1016/j.jsg.2017.08.008

    Article  Google Scholar 

  14. R. N. McGinnis, D. A. Ferrill, A. P. Morris, et al., “Mechanical stratigraphic controls on natural fracture spacing and penetration,” J. Struct. Geol. 95, 160–170 (2017). https://doi.org/10.1016/j.jsg.2017.01.001

    Article  Google Scholar 

  15. T. K. Mondal and S. S. Acharyya, “Fractured micro-granitoid enclaves: a stress marker,” J. Struct. Geol. 113, 33–41 (2018). https://doi.org/10.1016/j.jsg.2018.05.011

    Article  Google Scholar 

  16. T. K. Mondal and M. A. Mamtani, “3-D Mohr circle construction using vein orientation data from Gadag (Southern India) region—implications to recognize fluid pressure fluctuation,” J. Struct. Geol. 56, 45‒56 (2013). https://doi.org/10.1016/j.jsg.2013.08.005

    Article  Google Scholar 

  17. T. K. Mondal, S. Bhowmick, S. Das, et al., “Paleostress field reconstruction in the western Dharwar Craton, south India: Evidences from brittle faults and associated structures of younger granites,” J. Struct. Geol. 135, Art.104040 (2020). https://doi.org/10.1016/j.jsg.2020.104040

    Article  Google Scholar 

  18. J. Olson and D. D. Pollard, “Inferring paleostresses from natural fracture patterns: A new method,” Geology 17 (4), 345–348 (1989). https://doi.org/10.1130/0091-7613(1989)017<0345:IPFNFP>2.3.CO;2

    Article  Google Scholar 

  19. J. G. Ramsay, Folding and Fracturing of Rocks (McGraw-Hill, NY, USA, 1967).

    Google Scholar 

  20. J. M. Ramsey and F. M. Chester, “Hybrid fracture and the transition from extension fracture to shear fracture,” Nature 428, 63‒66 (2004). https://doi.org/10.1038/nature02333

    Article  CAS  Google Scholar 

  21. J. G. Ramsay and M. I. Huber, The Techniques of Modern Structural Geology, Strain Analysis (Acad. Press, London, UK, 1983).

    Google Scholar 

  22. K. Sato, A. Yamaji, and S. Tonai, “Parametric and non-parametric statistical approaches to the determination of paleostress from dilatant fractures: application to an Early Miocene dike swarm in Central Japan,” Tectonophysics 588, 69–81 (2013). https://doi.org/10.1016/j.tecto.2012.12.008

    Article  Google Scholar 

  23. P. Segall, E. H. McKee, S. J. Martel, et al., “Late Cretaceous age of fractures in the Sierra Nevada batholith, California,” Geology 18 (12), 1248‒1251 (1990). https://doi.org/10.1130/0091-7613(1990)018<1248:LCAOFI>2.3.CO;2

    Article  Google Scholar 

  24. R. H. Sibson, “Earthquake rupturing as a mineralizing agent in hydrothermal systems,” Geology 15 (8), 701–704 (1987). https://doi.org/10.1130/0091-7613(1987)15<701:ERAAMA>2.0.CO;2

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author Paramita Das acknowledges Indian Statistical Institute for Visiting Scientist research grant. She thanks Dr. Shiladri S. Das (Indian Statistical Institute, Kolkata, India) for providing the logistic supports. The authors are grateful to Sreyashi Bhowmick (Tel Aviv University International, Tel Aviv, Israel). The authors are thankful to anonymous reviewers for helpful comments and to Editor M.N. Shoupletsova (Geological Institute of Russian Academy of Sciences, Moscow, Russia) for thorough editing the manuscript.

Funding

This work was supported by Indian Statistical Institute research grant to Tridib Kumar Mondal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Mondal.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Acharyya, S.S., Mondal, T.K. et al. Evaluating Tensile Fractures in Rigid Clasts with Very High Aspect Ratio. Geotecton. (2024). https://doi.org/10.1134/S0016852124700080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0016852124700080

Keywords:

Navigation