Skip to main content
Log in

Back-Arc Magmatism in the Cadomian Basin of NW Iran: Ortho-Amphibolites from the Alam Kandi Area

  • Published:
Geotectonics Aims and scope

Abstract

Alam Kandi amphibolites are exposed in NW Iran within the Takab metamorphic complex along with gneiss, schist, meta-peridotites and serpentinites. They compose of epidote amphibolite, epidote-biotite amphibolite, garnet amphibolite, and ortho-amphibolite based on petrography and geochemical features. Amphibole is pargasitic calcic amphibole and plagioclase is anorthite-rich in these rocks. The protolith magma of the amphibolites was originated from an enriched mantle source (E-MORB), characterized by lacking negative Nb anomaly and positive Ba anomaly, indicative of formation of the magma from a metasomatized mantle by subduction components in a back arc basin. This magma was evolved by plagioclase and clinopyroxene fractionation as the main crystal-liquid separation mechanism. Back arc ophiolitic rocks are associated with the amphibolites which were formed in a supra-subduction setting of the Cadomian basin in NW Iran. Titanium contents in amphibole indicate temperature of 630–680°C, at pressures of ~9‒12 kbar for metamorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. Advay, M. Moazzen, and R. Hajialioghli, “Geochemical features of amphibolites from the Qarehaghaj area, East Azerbaijan, NW Iran; implications for paleotectonic setting,” N. J. Geol. Paläontol, 281 (1), 35–49 (2016).

    Google Scholar 

  2. A. Babakhani and J. Ghalamghash, 1 : 100 000 Geological Map of Takhte-Solyman (Geol. Surv. Iran. 2007), sh. 5463.

  3. A. Castro, C. Fernandez, J. Dela Rosa, I. Morenoventas, and G. Rogers, “Significance of MORB-derived amphibolites from the Aracena metamorphic belt, Southwest Spain,” J. Petrol. 37, 235–260 (1996).

    Article  Google Scholar 

  4. A. Colombi, Metamorphisme et Geochemie des Roches Mafiques des Alpes Ouest-Centrales (Geoprofil Viege–Domodossola–Locarno), Ph.D. Thesis (Univ. Lausanne, France. 1989).

  5. C. Cruciani, M. Franceschelli, M. Marchi, and M. Zucca, “Geochemistry of metabasites from NE Sardinia, Italy: Nature of the protoliths, magmatic trend, and geotectonic setting,” Mineral. Petrol. 74, 25–47 (2002).

    Article  Google Scholar 

  6. N. Culshaw and J. Dostal, “Amphibolites of the Shawanaga domain, Central Gneiss Belt, Grenville Province, Ontario: Tectonic setting and implications for relations between the Central Gneiss Belt and Midcontinental USA,” Precamb. Res. 113, 65–85 (2002).

    Article  Google Scholar 

  7. J. G. Fitton, “The OIB paradox,” Spec. Pap.—Geol. Soc. Am. 430, 387–412 (2007).

    Google Scholar 

  8. Z. Gao, H. F. Zhang, F. Yang, H. Yang, F. B. Pan, B. J. Lou, L. Gou, W. C. Xu, L. Tao, L.Q. Zhang, and J. Wu, “Back-arc basin development: Constraints on geochronology and geochemistry of arc-like and OIB-like basalts in the Central Qilian block (Northwest China),” Lithos 310–311, 255–268 (2018).

    Article  Google Scholar 

  9. C. Ghezzo, I. Memmi, and C. A. Ricci, “Un evento granulitico nel basamento metamorfico della Sardegna nord-orientale,” Mem. Soc. Geol. It. 20, 23–38 (1979).

    Google Scholar 

  10. J. B. Gill, Orogenic Andesites and Plate Tectonics (Springer, Berlin, 1981), pp. 230–247.

    Book  Google Scholar 

  11. R. Hajialioghli, M. Moazzen, G. T. R. Droop, R. Oberhänsli, R. Bousquet, A. Jahangiri, and M. Ziemann, “Serpentine polymorphs and PT evolution of meta-peridotites and serpentinites in the Takab area, NW Iran,” Mineral. Mag. 71, 155–174 (2007).

    Article  Google Scholar 

  12. R. Hajialioghli, M. Moazzen, A. Jahangiri, R. Oberhänsli, B. Mocek, and U. Altenberger, “Petrogenesis and tectonic evolution of metaluminous sub-alkaline granitoids from the Takab Complex, NW Iran,” Geol. Mag. 148, 250–268 (2010).

    Article  Google Scholar 

  13. B. Hamdi, Yu. Rozanov, and A. Yu. Zhuravle, “Latest Middle Cambrian metazoan reef from northern Iran,” Geol. Mag. 132 (4), 367–373 (1995). https://doi.org/10.1017/S0016756800021439

    Article  Google Scholar 

  14. J. M. Hammarstrom and E. A. Zen, “Aluminium in hornblende: an empirical igneous geobarometer,” Am. Mineral. 71, 1297–1313 (1986).

    Google Scholar 

  15. U. Harms, K. L. Cameron, K. Simon, and H. Brätz, “Geochemistry and petrogenesis of metabasites from the KTB ultradeep borehole, Germany,” Geol. Rundsch. 86, 155–166 (1997).

    Article  Google Scholar 

  16. L. S. Hollister, G. C. Grissom, E. K. Peters, H. H. Stowell, and V. B. Sisson, “Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons,” Am. Mineral. 72, 231–239 (1987).

    Google Scholar 

  17. M. C. Johnson and M. J. Rutherford, “Experimental calibration of the aluminum-in hornblende geobarometer with application to rocks,” Geology 17, 837–841 (1989).

    Article  Google Scholar 

  18. R. Kretz, “Symbols for rock-forming minerals,” Am. Mineral. 68, 277–279 (1983).

    Google Scholar 

  19. J. Laird, “Phase equilibria in mafic schists from Vermont,” J. Petrol. 21, 1–37 (1980).

    Article  Google Scholar 

  20. J. Laird and A. L. Albee, “Pressure, temperature and time indicators in mafic schist: their application to reconstructing the polymetamorphic history of Vermont,” Am. J. Sci. 281, 127–175 (1981).

    Article  Google Scholar 

  21. B. E. Leake, “The chemical distinction between ortho- and para- amphibolites,” J. Petrol. 5, 238–254 (1964).

    Article  Google Scholar 

  22. B. E. Leake, A. R. Woolley, C. E. S. Arps, W. D. Birch, M. C. Gilbert, J. D. Grice, F. C. Hawthorne, A. Kato, H. J. Kisch, V. G. Krivovichev, K. Linthout, J. Laird, J. A. Mandarino, V. W. Maresh, E. H. Nickel, N. M. S. Rock, J. C. Schumacher, D. C. Smith, N. C. N. Stephenson, L. Ungaretti, E. J. W. Whittaker, and G. Youzhi, “Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names,” Am. Mineral. 35, 219–246 (1997).

    Google Scholar 

  23. M. Moazzen and R. Oberhänsli, “Whole rock and relict igneous clinopyroxene geochemistry of ophiolite-related amphibolites from NW Iran-Implications for protolith nature,” N. Jb. Miner. Abh. 185 (1), 51–62 (2008).

    Article  Google Scholar 

  24. M. Moazzen, R. Oberhänsli, R. Hajialioghli, A. Moller, R. Bousquet, G.T.R. Droop, and A. Jahangiri, “Peak and post-peak PT conditions and fluid composition for scapolite-clinopyroxene-garnet calc-silicate rocks from the Takab area, NW Iran,” Eur. J. Mineral. 21, 149–162 (2009).

    Article  Google Scholar 

  25. M. Moazzen, R. Hajialioghli, A. Möller, G. T. R. Droop, R. Oberhänsli, U. Altenberger, and A. Jahangiri, “Oligocene partial melting in the Takab metamorphic complex, NW Iran: Evidence from in situ U‒Pb geochronology,” J. Sci. I. R. Iran 24 (3), 217–228 (2013).

    Google Scholar 

  26. A. Mogessie, R. Tessadri, and C. B. Veltam, “EMP–AMPH A Hypercard program to determine the name of an amphibole from electron microprobe analysis according to the International Mineralogical Association Scheme,” Comp. Geo Sci. 163, 309–313 (1990).

    Article  Google Scholar 

  27. M. T. Otten, “The origin of brown hornblende in the Artfjallet gabbro and dolerites,” Contrib. Mineral. Petrol. 86, 189–199 (1984).

    Article  Google Scholar 

  28. J. A. Pearce and J. R. Cann, “Ophiolite origin investigated by discriminant analysis using Ti, Zr and Y,” Earth Planet. Sci. Lett., 12, 339–349 (1971).

    Article  Google Scholar 

  29. J. A. Pearce and J. R. Cann, “Tectonic setting of basic volcanic rocks determined using trace element analyses,” Earth Planet. Sci. Lett., 19, 290–300 (1973).

    Article  Google Scholar 

  30. J. A. Pearce and G. H. Gale, “Identification of ore-deposition environment from trace element geochemistry of associated igneous host rocks,” Spec. Pub.—Geol. Soc. London 7 (1), 14–24 (1977).

    Google Scholar 

  31. J. G. Fitton, A. D. Saunders, M. J. Norry, B. S. Hardarson, and R. N. Taylor, “Thermal and chemical structure of the Iceland plume,” Earth Planet. Sci. Lett. 153, 197–208 (1997).

    Article  Google Scholar 

  32. M. R. Perfit, D. A. Gust, A. E. Bence, R. J. Arculus, and S. R. Taylor, “Chemical characteristics of island arc basalts: implications for mantle sources,” Chem. Geol. 30, 227–256 (1980).

    Article  Google Scholar 

  33. H. Rahimisadegh, H. Moeinzadeh, and M. Moazzen, “Geochemistry and geochronologyof amphibolites from the Sirjan area, Sanandaj-Sirjan zone of Iran: Jurassic metamorphism prior to Arabia and Eurasia collision,” J. Geodynam. 143, 1–43 (2021).

    Google Scholar 

  34. J. Ramezani and R. D. Tucker, “The Saghand Region, Central Iran: U–Pb geochronology, petrogenesis and implications for Gondwana tectonics,” Am. J. Sci. 303, 622–665 (2003).

    Article  Google Scholar 

  35. A. Saki, “Proto-Tethyan remnants in northwest Iran: Geochemistry of the gneisses and metapelitic rocks,” Gondwana Res. 17 (4), 704–714 (2010).

    Article  Google Scholar 

  36. A. Saki, M. Moazzen, and R. Oberhänsli, “P–T evolution of the Precambrian Metamorphic Complex, NW Iran: A study of metapelitic rocks,” Geol. J. 46 (1), 10–25 (2011).

    Article  Google Scholar 

  37. J. C. Schumacher, “Empirical ferric iron corrections: necessity, assumptions and effects on selected geothermobarometers,” Mineral. Mag. 55, 3–18 (1991).

    Article  Google Scholar 

  38. F. Sepidbar, H. Shafaii Moghadam, C. Li, B. Stern, J. Peng, and Y. Vesali, “Cadomian magmatic rocks from Zarand (SE Iran) formed in a retro-arc basin,” Lithos 366–367, 1–17, (2020).

    Google Scholar 

  39. J. W. Shervais, “Ti‒V plots and the petrogenesis of modern and ophiolite lavas,” Earth Planet. Sci. Lett. 592, 101–118 (1982). https://doi.org/10.1016/0012-821X(82)90120-0

    Article  Google Scholar 

  40. S. A. Silantev, S. D. Sokolov, G. V. Bondarenko, N. N. Kononkova, and G. M. Kolesov, “Geochemistry and petrology of high-pressure amphibolites in the accretionary structure of the Taigonos Peninsula, Northeastern Russia,” Geokhim. Int. 34, 1139–1147 (1996).

    Google Scholar 

  41. A. A. Sorokin, R. O. Ovchinnikov, W. Xu, V. P. Kovach, H. Yang, A. B. Kotov, V. A. Ponomarchuk, A. V. Travin, and Y. V. Plotkina, “Ages and nature of the protolith of the Tulovchikha metamorphic complex in the Bureya Massif, Central Asian Orogenic Belt, Russia: Evidence from U–Th–Pb, Lu–Hf, Sm–Nd, and 40Ar/39Ar data,” Lithos, 332–333, 340–354 (2019).

    Article  Google Scholar 

  42. F. S. Spear, “NaSi ⇌ CaAl exchange equilibrium between plagioclase and amphibole: an empirical model,” Contrib. Mineral. Petrol. 72, 33–41 (1980).

    Article  Google Scholar 

  43. F. S. Spear, “Phase equilibria of amphibolites from the Post Pond Volcanics, Mt. Cube Quadrangle, Vermont,” J. Petrol. 23, 383–426 (1982).

    Article  Google Scholar 

  44. D. F. Stockli, J. Hassanzadeh, L.D. Stockli, G. Axen, J. D. Walker, and T. J. Dewane, “Structural and geochronological evidence for Oligo-Miocene intra-arc low-angle detachment faulting in the Takab-Zanjan area, NW Iran,” Abstr. Prog. Geol. Soc. Am. 36, 319 (2004).

    Google Scholar 

  45. R. N. Thompson, “Geochemistry and magma genesis (Part 7: The British Tertiary Province),” in Igneous Rocks of the British Isles, Ed. by D. S. Sutherland (Wiley, NY, USA, 1981), pp. 461–477.

    Google Scholar 

  46. T. Yihunie, M. Adachi, and K. Yamamoto, “Geochemistry of the Neoproterozoic metabasic rocks from the Negele area, southern Ethiopia: Tectonomagmatic implications,” J. Afr. Earth Sci. 44, 255–269 (2006).

    Article  Google Scholar 

  47. Y. H. Wang, C. J. Xue, J. J. Liu, J. P. Wang, J. T. Yang, F. F. Zhang, Z. N. Zhao, Y. J. Zhao, and B. Liu, “Early Carboniferous adakitic rocks in the area of the Tuwu deposit, Eastern Tianshan, NW China: Slab melting and implications for porphyry copper mineralization,” J. Asian Earth Sci. 103 (1), 332–349 (2015).

    Article  Google Scholar 

  48. J. A. Winchester and P.A. Floyd, “Geochemical discrimination of different magma series and their differentiation products using immobile elements,” Chem. Geol. 20, 325–343 (1977).

    Article  Google Scholar 

  49. Yu. A. Zorin, E. V. Sklyarov, V. G. Belichenko, and A. M. Mazukabzov, “Island arc–back-arc basin evolution: implications for Late Riphean–Early Paleozoic geodynamic history of the Sayan–Baikal folded area,” Russ. Geol. Geophys. 50, 149–161 (2009).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank A. Mosiol (Potsdam University, Germany) for her help with whole rock analysis. We are grateful to the anonymous reviewers for helpful comments and the editor for thorough editing.

Funding

University of Tabriz (Iran) provided the field work facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hajialioghli.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajialioghli, R., Moazzen, M., Oberhänsli, R. et al. Back-Arc Magmatism in the Cadomian Basin of NW Iran: Ortho-Amphibolites from the Alam Kandi Area. Geotecton. 57, 200–212 (2023). https://doi.org/10.1134/S0016852123020048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852123020048

Keywords:

Navigation