Skip to main content
Log in

The Relationship between Brittle Tectonics and Hydrothermalism: A Case Study of the Aïn Ouarka Area in the Saharan Atlas, Western Algeria

  • Published:
Geotectonics Aims and scope

An Erratum to this article was published on 01 June 2023

This article has been updated

Abstract

The present work is based on the multidisciplinary geo-structural analysis of the hydrothermal zone of Aïn Ouarka. Located in the Western Saharan Atlas of Algeria, this region presents a very good example where geothermal sources are largely controlled by tectonics events. Employing 114 fracture segments (faults, open fractures, joints) were identified especially in the Mesozoic formations. These faults lineaments are analyzed in terms of frequency, geometry and kinematics. Our results show that the structural patterns consist of two conjugate strike-slip fractures: (i) the dextral component on the WE and NW faults and (ii) the sinistral component on the NS faults. Statistical analysis shows that these fractures correspond to the Riedel shear style where the transformation zone is WE oriented and it compartmentalizes blocks. Under the effect of NW‒SE compressive, the stress collapsed zone appears as a pull-apart graben. This zone is affected by deep fractures, which are accompanied by an uplift of Triassic material. The transtension lead the formation of shearing, these fractures become as active over times. Riedel fractures, synthetic (Y, P and R) oriented 90° N, 70° N and 120° N but also the anthetic fractures (R') oriented respectively 160° N show that there were reactivated during later tectonic episodes. Correlation with surface geothermal manifestations, aeomagnetism, and tectonic fracturing reveals that fractures are distributed along three main directions NNW/SSE and WNW/ESE and the atlasic direction oriented 70° N. For the faults depth, we relied on the processing of aeromagnetic data. Our results show that the depths of the tectonic structures argue in favor of a collapsed zone along the WE fault of Aïn Ouarka where the depths increase from 0.5 km to more than 2 km approaching the central zone. In this zone an emergence of sources of hot water is noted. The results obtained show that the distribution of the basement depth on the two flanks of the WE fault reaches almost 100 m thus revealing the vertical throw of the WE fault. The hydrodynamic model elaborated shows that under the regional tectonic regime probably recent, a collapsed zone has been highlighted. This cataclysm engendered uplift of plutonic reservoir at shallow depth. Rainwater infiltrates through permeable Mesozoic formations, flows towards the cataclysm zone. Subjected to high temperatures of plutonism, these waters warm up and rise under the effect of the low density to reach the surface in the form of hydrothermal springs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

Change history

REFERENCES

  1. R. Aït Ouali, Le Rifting des Monts des Ksour au Lias. Organisation du Bassin, Diagenèse des Assises Carbonatées, Place dans les Ouvertures Mésozoiques au Maghreb. Doctoral Diss. (Univ. Sci. Technol., Houari Boumidiene, Algeria, 1991).

  2. R. Aït Ouali, “Un modèle de rift: Le bassin des Ksour (Atlas Saharien occidental) au Trias–Lias,” Réun. Annu. Sci. Terre, 14, (1992).

  3. H. Armannsson, H. Kristmannsdóttir, H. Torfason, and M. Ólafsson, “Natural changes in unexploited high-temperature geothermal areas in Iceland,” in Proceedings of World Geothermal Congress, October 24–27, 2020 (Reykiavik, Iceland, 2001), pp. 521–526.

  4. F. Asfirane and A. Gladeano, “The aeromagnetic map of northern Algeria: Processing and interpretation,” Earth Planet. Sci. Lett. 136 (1–2), 61–78 (1995).

    Article  Google Scholar 

  5. A. Aydin, “Fractures, faults, and hydrocarbon entrapment, migration and flow,” Mar. Petrol. Geol. 17 (7), 797–814 (2000).

    Article  Google Scholar 

  6. G. Ballas, R. Soliva, J.-P. Sizun, A. Benedicto, T. Cavailhes, and S. Raynaud, “The importance of the degree of cataclasis in shear bands for fluid flow in porous sandstone, Provence, France,” AAPG Bull. 96 (11), 2167–2186 (2012).

    Article  Google Scholar 

  7. E. Barbier, “Geothermal energy technology and current status: An overview,” Renewable Sustainable Energy Rev. 6 (1–2), 3–65 (2002).

    Article  Google Scholar 

  8. C. A. Barton, M. D. Zoback, and D. Moos, “Fluid flow along potentially active faults in crystalline rock,” Geology 23 (8), 683–686 (1995).

    Article  Google Scholar 

  9. B. Bassoulet, “Contribution à l’Étude Stratigraphique du Mésozoïque de l’Atlas Saharien Occidental (Algérie),” Thèse. Sci. Nat. (Univ. Paris, 1973, Vol. VI).

  10. T. M. Belgrano, M. Herwegh, and A. Berger, “Inherited structural controls on fault geometry, architecture and hydrothermal activity: An example from Grimsel Pass, Switzerland,” Swiss J. Geosci. 109 (3), 345–364 (2016).

    Article  Google Scholar 

  11. N. Benaouali-Mebarek, D. F. de Lamotte, E. Roca. R. Bracene, J. L. Faure, W. Sassi, and F. Roure, “Post-Cretaceous kinematics of the Atlas and Tell systems in central Algeria: Early foreland folding and subduction-related deformation,” C. R. Geosci. 338 (1–2), 115–125 (2006).

    Article  Google Scholar 

  12. V. Bense, M. Person, K. Chaudhary, Y. You, N. Cremer, and S. Simon, “Thermal anomalies indicate preferential flow along faults in unconsolidated sedimentary aquifers,” Geophys. Res. Lett. 35 (24), (2008). https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/ 2008GL036017.

  13. A. Brogi and P. Fulignati, “Tectonic control on hydrothermal circulation and fluid evolution in the Pietratonda–Poggiopeloso (Southern Tuscany, Italy) carbonate- hosted sub-mineralization,” Ore Geol. Rev. 44, 158–171 (2012).

    Article  Google Scholar 

  14. R. L. Bruhn, W. T. Parry, W. A. Yonkee, and T. Thompson, “Fracturing and hydrothermal alteration in normal fault zones,” Pure Appl. Geophys. 142 (3–4), 609–644 (1994).

    Article  Google Scholar 

  15. N. Burnside, N. Montcoudiol, K. Becker, and E. Lewi, “Geothermal energy resources in Ethiopia: Status review and insights from hydrochemistry of surface and groundwaters,” Wiley Interdisip. Rev. Ser: Water 8 (6), e1554 (2021).

    Google Scholar 

  16. S. Byrdina, D. Ramos, J. Vandemeulebrouck, P. Masias, A. Revil, A. Finizola, K. G. Zuniga, V. Cruz, Y. Antayhua, and O. Macedo, “Influence of the regional topography on the remote emplacement of hydrothermal systems with examples of Ticsani and Ubinas volcanoes, Southern Peru,” Earth Planet. Sci. Lett. 365, 152–164 (2013).

    Article  Google Scholar 

  17. S. Caliro, G. Chiodini, D. Galluzzo, D. Granieri, M. La Rocca, G. Saccorotti, and G. Ventura, “Recent activity of Nisyros volcano (Greece) inferred from structural, geochemical and seismological data,” Bull. Volcanol. 67 (4), 358–369 (2005).

    Article  Google Scholar 

  18. B. Cavalazzi, R. Barbieri, F. Gómez, B. Capaccioni, K. Olsson-Francis, M. Pondrelli, and M. Hagos, “The Dallol geothermal area, Northern Afar (Ethiopia)—An exceptional planetary field analog on Earth,” Astrobiology 19 (4), 553–578 (2019).

    Article  Google Scholar 

  19. S. C. Cox. C. D. Menzies, R. Sutherland, P. H. Denys, C. Chamberlain, and D. Teagle, “Changes in hot spring temperature and hydrogeology of the Alpine Fault hanging wall, NE/W Zealand, induced by distal South Island earthquakes,” Geofluids 15 (1–2), 216–239 (2015).

    Article  Google Scholar 

  20. J. G. Crider, “The initiation of brittle faults in crystalline rock,” J. Struct. Geol. 77, 159–174 (2015).

    Article  Google Scholar 

  21. T. Cui, J. Yang, and I. M. Samson, “Numerical modeling of hydrothermal fluid flow in the Paleoproterozoic Thelon Basin, Nunavut, Canada,” J. Geochem. Explor. 106 (1–3), 69–76 (2010).

    Article  Google Scholar 

  22. D. Curewitz and J. A. Karson, “Structural settings of hydrothermal outflow: Fracture permeability maintained by fault propagation and interaction,” J. Volcanol. Geotherm. Res. 79 (3), 149–168 (1997).

    Article  Google Scholar 

  23. D. F. De Lamotte, B. Saint Bezar, R. Bracène, and E. Mercier, “The two main steps of the Atlas building and geodynamics of the Western Mediterranean,” Tectonics 19 (4), 740–761 (2000).

    Article  Google Scholar 

  24. D. F. De Lamotte, P. Leturmy, Y. Missenard, S. Khomsi, G. Ruiz, O. Saddiqi, and A. Michard, “Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia): An overview,” Tectonophysics 475 (1), 9–28 (2009).

    Article  Google Scholar 

  25. L. Derry, M. Evans, R. Darling, and C. France-Lanord, “Hydrothermal heat flow near the Main Central Thrust, Central Nepal Himalaya,” Earth Planet. Sci. Lett. 286 (1), 101–109 (2009).

    Article  Google Scholar 

  26. L. C. Ding, A. Akbarzadeh, and L. Tan, “A review of power generation with thermoelectric system and its alternative with solar ponds,” Renewable Sustainable Energy Rev. 81, 799–812 (2018).

    Article  Google Scholar 

  27. M. Douihasni, Etude Structurale de la Terminaison Nord Orientale de l’Anticlinal de Aïn Ouarka (Monts des Ksour, Atlas Saharien, Algérie) (Mém. DEA. Fac. Sci., Oran, Inédit. 1974).

  28. P. J. Doyle, C. Ang, L. Snead, Y. Katoh, K. Terrani, and S. S. Raiman, “Hydrothermal corrosion of first-generation dual-purpose coatings on silicon carbide for accident-tolerant fuel cladding,” J. Nuclear Mater. 544, 152695 (2021).

    Article  Google Scholar 

  29. E. Earnest and D. Boutt, “Investigating the role of hydromechanical coupling on flow and transport in shallow fractured-rock aquifers,” Hydrogeol. J. 22 (7), 1573–1591 (2014).

    Article  Google Scholar 

  30. T. A. Ehlers and D. S. Chapman, “Normal fault thermal regimes: conductive and hydrothermal heat transfer surrounding the Wasatch fault, Utah,” Tectonophysics 312 (2–4), 217–234 (1999).

    Article  Google Scholar 

  31. J. P. Evans, C. B. Forster, and J. V. Goddard, “Permeability of fault-related rocks, and implications for hydraulic structure of fault zones,” J. Struct. Geol. 19 (11), 1393–1404 (1997).

    Article  Google Scholar 

  32. J. Faulds, M. Coolbaugh, V. Boucho, I. Moek, and K. Oguz, “Characterizing structural controls of geothermal reservoirs in the great basin, USA and Western Turkey: Developing successful exploration strategies in extended terranes,” in World Geothermal Congress, April 25–30, 2010 (BRGM, Bali, Indonesia, 2010). https://hal-brgm.archives-ouvertes.fr/hal-00495884.

  33. D. Faulkner, C. Jackson, R. Lunn, R. Schlische, Z. Shipton, C. Wibberley, and M. Withjack, “A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones,” J. Struct. Geol. 32 (11), 1557–1575 (2010).

    Article  Google Scholar 

  34. C. Fillon and P. Van der Beek, “Post-orogenic evolution of the Southern Pyrenees: Constraints from inverse thermo-kinematic modeling of low-temperature thermo-chronology data,” Basin Res. 24 (4), 418–436 (2012).

    Article  Google Scholar 

  35. C. Forster and L. Smith, “The influence of groundwater flow on thermal regimes in mountainous terrain: A model study,” J. Geophys. Res.: Solid Earth. 94 (B7), 9439–9451 (1989).

    Article  Google Scholar 

  36. C. B. Forster, J. S Caine, S. Schulz, and D. L. Nielson, “Fault zone architecture and fluid flow an example from Dixie Valley, Nevada,” in Proceedings of Twenty-second Workshop on Geothermal Reservoir Engineering (Stanford Univ., Stanford, California, USA, 1997), pp. 123–130.

  37. W. S. Fyfe, Fluids in the Earth’s Crust: Their Significance in Metamorphic, Tectonic and Chemical Transport Process (Elsevier, NY, USA, 2012. Vol. 1).

    Google Scholar 

  38. C. Garibaldi, L. Guillou-Frottier, J. M. Lardeaux, D. Bonté, S. Lopez, V. Bouchot, and P. Ledru, “Thermal anomalies and geological structures in the Provence basin: Implications for hydrothermal circulations at depth,” Bull. Soc. Géol. France, 181 (4), 363–376 (2010).

    Article  Google Scholar 

  39. G. Garven, S. Bull, and R. Large, “Hydrothermal fluid flow models of stratiform genesis in the Mcarthur basin, northern territory of Australia,” Geofluids 1 (4), 289–311(2001).

    Article  Google Scholar 

  40. C. Glotzbach, C. Spiegel, J. Reinecker, M. Rahn, and W. Frisch, “What perturbs isotherms? An assessment using fission-track thermochronology and thermal modelling along the Gotthard transect, Central Alps,” Spec. Publ.—Geol. Soc. London 324 (1), 111–124 (2009).

    Article  Google Scholar 

  41. S. E. Grasby and I. Hutcheon, “Controls on the distribution of thermal springs in Southern Alberta and British Columbia,” Can. J. Earth Sci. 38, 427–440 (2001).

    Article  Google Scholar 

  42. N. Hamzah, K. Tokimatsu, and K. Yoshikawa, “Solid fuel from oil palm biomass residues and municipal solid waste by hydrothermal treatment for electrical power generation in Malaysia: A review,” Sustainability 11 (4), 1–23 (2019).

    Article  Google Scholar 

  43. K. Hasebe, N. Fujii, and S. Uyeda, “Thermal processes under island arcs,” Tectonophysics 10 (1–3), 335–355 (1970).

    Article  Google Scholar 

  44. M. J. Heap, B. M. Kennedy, J. I. Farquharson, J. Ashworth, K. Mayer, M. Letham-Brake, and D. B. Dingwell, “A multidisciplinary approach to quantify the permeability of the Whakaari/White Island volcanic hydrothermal system (Taupo volcanic zone, New Zealand),” J. Volcanol. Geotherm. Res. 332, 88–108 (2017).

    Article  Google Scholar 

  45. J. W. Hedenquist and R. W. Henley, “Hydrothermal eruptions in the Waiotapu geothermal system, New Zealand; their origin, associated breccias, and relation to precious metal mineralization,” Econom. Geol. 80 (6), 1640–1668 (1985).

    Article  Google Scholar 

  46. S. E. Ingebritsen, S. Geiger, S. Hurwitz, and T. Driesner, “Numerical simulation of magmatic hydrothermal systems,” Rev. Geophys. 48 (1), RG1002 (2010). https://doi.org/10.1029/2009RG00028

    Article  Google Scholar 

  47. M. R. Karlsdottir, J. Heinonen, H. Palsson, and O. P. Palsson, “Life cycle assessment of a geothermal combined heat and power plant based on high temperature utilization,” Geothermics 84, 101727 (2020).

    Article  Google Scholar 

  48. N. KaziTani, Evolution Géodynamique de la Bordure Nord Africaine. Le Domaine Intra-Plaque Nord-Africain. Approche Mégaséquentielle. Thèse d’État. (Univ. Pau., France, 1986. Vols. 1–2).

  49. M. Khodayar, S. Björnsson, S. Kristinsson, R. Karlsdóttir, M. Ólafsson, and S. Víkingsson, “Tectonic control of the Theistareykir geothermal field by rift and transform zones in North Iceland: A multidisciplinary approach,” Open J. Geol. 8, 543–584 (2018). https://doi.org/10.4236/ojg.2018.86033

    Article  Google Scholar 

  50. E. Laville, Evolution Sédimentaire, Tectonique et Magmatique du Bassin Jurassique du Haut Atlas(Maroc): Modèle en Relais Multiples de Décrochements. Doctoral Diss. (Montpelier II Univ., Montpelier, France, 1985).

  51. E. Laville and J. P. Petit, “Role of syn-sedimentary strike-slip faults in the formation of Moroccan Triassic basins,” Geology 12 (7), 424–427 (1984).

    Article  Google Scholar 

  52. D. L. López and L. Smith, “Fluid flow in fault zones: analysis of the interplay of convective circulation and topographically driven groundwater flow,” Water Resour. Res. 31 (6), 1489–1503 (1995).

    Article  Google Scholar 

  53. M. Lucian and L. Fiori, “Hydrothermal carbonization of waste biomass: Process design, modeling, energy efficiency and cost analysis,” Energies 10 (2), (2017).

  54. J. W. Lund and A. N. Toth, “Direct utilization of geothermal energy 2020 worldwide review,” Geothermics 90, 101915 (2021).

    Article  Google Scholar 

  55. H. Mansour, A. Issaadi, M. Stamboul, and I. Zeroual, “Apport des systèmes d’information à l’établissement d’une cartographie hydrogéologique régionale (Monts des Ksour, Atlas saharien occidental, Algérie),” Bull. Serv. Géol. l’Algérie 19 (1), 71–85 (2008).

  56. M. Mattauer, P. Tapponnier, and F. Proust, “Sur les mécanismes de formation des chaines intracontinentales; l’exemple des chaines atlasiques du Maroc,” Bull. Soc. Géol. France 7 (3), 521–526 (1977).

    Article  Google Scholar 

  57. A. Meddah, La Province Magmatique de l’Atlantique Central (CAMP) dans le Bassin des Ksours, Atlas saharien occidental, Algérie. Doctoral Diss. (Univ. Mohamed Ben Ahmed d’Oran 2, France, 2010).

  58. L. Mekahli, Hettangien Bajocien Supérieur des Monts des Ksour: Biostratigraphie, Sédimentologie, Évolution Paléogéographique et Stratigraphique Séquentielle. Thèse Doc. d’Etat. (Univ. d’Oran Algérie, 1995).

  59. L. Mekahli, “Évolution des Monts des Ksour (Algérie) de l’Hettangien au Bajocien. Biostratigraphie, sédimentologie, paléogéographie et stratigraphie séquentielle,” Trav. Doc.Lab. Géol. Lyon 147 (1), 3–319 (1998).

  60. G. Michard and C. Fouillac, “Remarques sur le géothermomètre Na, K and Ca,” J. Volcanol. Geotherm. Res. 1 (3), 297–304 (1976).

    Article  Google Scholar 

  61. H. G. Miller and V. Singh, “Potential field tilt a new concept for location of potential field sources,” J. Appl. Geophys. 32 (2–3), 213–217 (1994).

    Article  Google Scholar 

  62. V. Moon, J. Bradshaw, R. Smith, and W. de Lange, “Geotechnical characterisation of stratocone crater wall sequences, White Island Volcano, New Zealand,” Eng. Geol. 81 (2), 146–178 (2005).

    Article  Google Scholar 

  63. G. Norini, G. Groppelli, R. Sulpizio, G. Carrasco-Núñez, P. Dávila-Harris, C. Pellicioli, and R. De Franco, “Structural analysis and thermal remote sensing of the Los Humeros Volcanic Complex: Implications for volcano structure and geothermal exploration,” J. Volcanol. Geotherm. Res. 301, 221–237 (2015).

    Article  Google Scholar 

  64. S. N. Pandey, V. Vishal, and A. Chaudhuri, “Geothermal reservoir modeling in a coupled thermo-hydro-mechanical-chemical approach: A review,“ Earth-Sci. Rev. 185, 1157–1169 (2018).

    Article  Google Scholar 

  65. A. Piqué and E. Laville, “The central Atlantic rifting: Reactivation of Palaeozoicstructures?” J. Geodynam. 21 (3), 235–255 (1996).

    Article  Google Scholar 

  66. A. Pique, L. Ait Brahim, R. Ait Ouali, M. Amrhar, M. Charroud, C. Gourmelen, and P. Tricart, “Evolution structurale des domaines atlasiques du Maghreb au Meso-Cenozoique; le Role des structures heritees dans la deformation du domaine atlasique de l’Afrique du Nord,” Bull. Soc. Géol. France 169 (6), 797–810 (1998).

    Google Scholar 

  67. M. Rajaram, “What’s new in interpretation of magnetic data,” Geohorizons, 50–51 (1996).

  68. D. Ravat, “Analysis of the Euler method and its applicability in environmental magnetic investigations,” J. Environ. Eng. Geophys. 1 (3), 229–238 (2009).

    Article  Google Scholar 

  69. A. B. Reid, J. M. Allsop, H. Granser, A. T. Millett, and I. W. Somerton, “Magnetic interpretation in three dimensions using Euler deconvolution,” Geophysics 55 (1), 80–91(1990).

    Article  Google Scholar 

  70. C. Riedel, M. Schmidt, R. Botz, and F. Theilen, “The Grimsey hydrothermal field offshore North Iceland: Crustal structure, faulting and related gas venting,” Earth Planet. Sci. Lett. 193 (3–4), 409–421 (2001).

    Article  Google Scholar 

  71. A. Salem, S. Williams, D. Fairhead, R. Smith, and D. Ravat, “Interpretation of magnetic data using tilt-angle derivatives,” Geophysics 73 (1), L1–L10 (2008).

    Article  Google Scholar 

  72. K. Sauer, M. Rock, F. Caporuscio, and E. Hardin, “Hydrothermal reactivity of neutron absorber composites,” J. Nuclear Mater. 531, 152033 (2020).

    Article  Google Scholar 

  73. J. Sausse, Caractérisation et Modélisation des écoulements Fluides en Milieu Fissuré. Relation avec les Altérations Hydrothermales et Quantification des Paléocontraintes. Ph.D. Thesis (Univ. Henri Poincaré-Nancy I, France, 1998).

  74. A. Sebane, L. Mekahli, M. Benhamou, and S. Tchenar, “Influence des évènements tectono-sédimentaires sur l’évolution des foraminifères du Lias-Dogger dans la région d’AïnOuarka (Atlas Saharien, Algérie),” Trav. Doc. Lab. Géol. Lyon 156 (1), 210–211(2002).

  75. P. G. Silver and N. J. Valette-Silver, “Detection of hydrothermal precursors to large northern California earthquakes,” Science 257 (5075), 1363–1368 (1992).

    Article  Google Scholar 

  76. R. Sonney and F. D. Vuataz, “Numerical modeling of Alpine deep flow systems: A management and prediction tool for an exploited geothermal reservoir (Lavey-les-Bains, Switzerland),” Hydrogeol. J. 17 (3), 601–616 (2009).

    Article  Google Scholar 

  77. I. Stober and B. Kurt, Geothermal Energy (Springer, Berlin, Heidelberg, Germany, 2013).

    Book  Google Scholar 

  78. A. Taillefer, L. Guillou-Frottier, R. Soliva, F. Magri, S. Lopez, G. Courrioux, and E. Le Goff, “Topographic and faults control of hydrothermal circulation along dormant faults in an orogeny,” Geochem. Geophys. Geosyst. 19 (12), 4972–4995 (2018).

    Google Scholar 

  79. D. T. Thompson, “EULDPH: A new technique for making computer-assisted depth estimates from magnetic data,” Geophysics 47 (1), 31–37 (1982).

    Article  Google Scholar 

  80. B. Verduzco, J. D. Fairhead, C. M. Green, and C. MacKenzie, “New insights into magnetic derivatives for structural mapping,” The Leading Edge 23 (2), 116–119 (2004).

    Article  Google Scholar 

  81. J. Vergés and M. Fernàndez, “Tethys–Atlantic interaction along the Iberia–Africa plate boundary: The Betic–Rif orogenic system,” Tectonophysics 579, 144–172 (2012).

    Article  Google Scholar 

  82. P. Weis, “The dynamic interplay between saline fluid flow and rock permeability in magmatic-hydrothermal systems,” Geofluids 15 (1–2), 350–371 (2015).

    Article  Google Scholar 

  83. J. Yang, Z. Feng, X. Luo, and Y. Chen, “Numerically quantifying the relative importance of topography and buoyancy in driving groundwater flow,” Science in China. Ser. D: Earth Sci. 53 (1), 64–71 (2010).

    Article  Google Scholar 

  84. A. K. Yelles-Chaouche, R. Aït Ouali, R. Bracene, M. E. M. Derder, and H. Djellit, “Chronologie de l’ouverture du bassin des Ksour (Atlas Saharien, Algérie) au début du Mésozoïque,” Bull. Soc. Géol. France 172 (3), 285–293 (2001).

    Article  Google Scholar 

  85. Historic ANSS Composite Catalog. https://www. ncedc.org/anss/catalog-search.html (Accessed March, 2022).

  86. Satellite images. https://vertex.daac.asf.alaska.edu/ (Accessed March, 2022).

  87. DEM. https://vertex.daac.asf.alaska.edu/ (Accessed March, 2022).

  88. NCEDC, Northern California Earthquake Data Center. https://ncedc.org/.

  89. Bing Satellite Images. https://www.bing.com/ (Accessed March 2022).

  90. SAS Planet Software. http://www.sasgis.org/sasplaneta/ (Accessed March, 2022).

Download references

ACKNOWLEDGMENTS

We are very grateful to our colleagues from the Hydraulic Drilling (Hydrogeological Services of Algerian National Company of Geophysics, Algeria) of the Aïn Sefra region for providing us with important data on the hydrochemistry of the Aïn Ouarka area. We are thankful the reviewer Prof. M.D. Khutorskoy (GIN RAS, Moscow, Russia) and an anonymous reviewer for time devoted to reading and approving and editor M.N. Shoupletsova (GIN RAS, Moscow, Russia) for thorough editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zaagane.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadjou, F., Refas, S., Asfirane, F. et al. The Relationship between Brittle Tectonics and Hydrothermalism: A Case Study of the Aïn Ouarka Area in the Saharan Atlas, Western Algeria. Geotecton. 57, 230–250 (2023). https://doi.org/10.1134/S0016852123020036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852123020036

Keywords:

Navigation