Skip to main content
Log in

Neotectonics from Geomorphic Indices: Highlights from Main Mantle Thrust (Pakistan)

  • Published:
Geotectonics Aims and scope

Abstract

The collision of the Eurasian and Indian plates has resulted in two spatially offset subduction zones, the Makran subduction zone to the south and the Himalayan convergent margin to the north. The Main Mantle Thrust (MMT) and adjoining regions have a complex geomorphic setting and geological variations with a number of active faults that were connected with numerous major devastating earthquakes in the investigation. Our study was carried out to develop a DEM based geomorphometric approach to study the stream power model and hypsometric analysis along the MMT and surroundings to achieve rigorous investigation of its potential to delineate active topography. Active tectonics in this region has greatly influenced the drainage system and geomorphic expressions. The study area is a junction of three important mountain ranges (Hindu Kush-Karakorum-Himalayas) and thus is an ideal natural laboratory to investigate the relative tectonic activity resulting from the India-Eurasia collision. Morphotectonic and geomorphometric evaluations of the MMT and surrounding regions were conducted by associating various DEM derived geomorphometric indices such as steepness (Ks), hypsometric integral (HIs), Hack gradient index (SL) and concavity (θ). From the results obtained, we deduce that these combined procedures reveal the highly active deformed zones connected to neotectonics. Ground validations and Landsat satellite imagery also give clue about the active faults based on the offsetted channels, triangular facets and severely deformed topography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

Similar content being viewed by others

REFERENCES

  1. A. Azor, E. A. Keller, and R. S. Yeats, “Geomorphic indicators of active fold growth: South Mountain–Oak Ridge anticline, Ventura basin,” GeoSci. World 114 (6) 745–753 (2002).

    Google Scholar 

  2. D. W. Burbank, J. Leland, E. Fielding, R. S. Anderson, N. Brozovic, M. R. Reid, and C. Duncan, “Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas,” Nature 379 (6565), 505–510 (1996). https://doi.org/10.1038/379505a0

    Article  Google Scholar 

  3. D. W. Burbank, K. A. Farley, and E. J. Fielding, “Structural and topographic evolution of the central Transverse Ranges, California, from apatite fission-track, (U–Th)/He and digital elevation model analysis,” Basin Res. 12, 97–114 (2000). https://doi.org/10.1046/j.1365-2117.2000.00116.x

    Article  Google Scholar 

  4. S. H. Brocklehurst, “Hypsometry of glaciated landscapes,” Earth Surf. Processes Landforms 29 (7), 907–926 (2004).

    Article  Google Scholar 

  5. Y. C. Chen, “Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: Tectonic implications based on stream-gradient and hypsometric analysis,” Geomorphology 56 (1), 109–137 (2003).

    Article  Google Scholar 

  6. A. Duvall, E. Kirby, and D. Burbank, “Tectonic and lithologic controls on bedrock channel profiles and processes in coastal California,” J. Geophys. Res. 109, F03002 (2004). https://doi.org/10.1029/2003JF000086

    Article  Google Scholar 

  7. D. P. Finlayson and D. R. Montgomery, “Modeling large-scale fluvial erosion in geographic information systems,” Geomorphology 53, 147–164 (2003). doi (02)00351-3https://doi.org/10.1016/S0169-555X

  8. J. J. Flint, “Stream gradient as a function of order, magnitude, and discharge,” Water Resour. Res. 10 (5), 969–973 (1974).

    Article  Google Scholar 

  9. C. M. George and C. Paraschou,”Vertical accuracy of the SRTM DTED level 1 of Crete,” Int. J. Appl. Earth Observ. Geoinform. 7, 49–59, 2005. https://doi.org/10.1016/j.jag.2004.12.001

    Article  Google Scholar 

  10. J. T. Hack, “Studies of longitudinal stream profiles in Virginia and Maryland,” U.S. Geol. Surv. Pap. 294-B (1957). https://doi.org/10.3133/pp294B

  11. J. T. Hack, “Stream profile analysis and stream-gradient index,” U.S. Geol. Surv. J. Res. 1 (4), 421–429 (1973).

    Google Scholar 

  12. N. Harkins, E. Kirby, A. Heimsath, R. Robinson, and U. Reiser, “Transient fluvial incision in the headwaters of the Yellow River, northeastern Tibet, China,” J. Geophys. Res. 112, F03S04, (2007). https://doi.org/10.1029/2006JF000570

    Article  Google Scholar 

  13. J. M. Harlin, “Statistical moments of the hypsometric curve and its density function,” Math. Geosci. 10, 59–72 (1978).

    Google Scholar 

  14. A. D. Howard, “Role of hypsometry and platform in basin hydrologic response”, Hydrol. Proc. 4 (4), 373–385 (1990).

    Article  Google Scholar 

  15. A. D. Howard, “A detachment-limited model of drainage basin evolution,” Water Resour. Res. 30 (7), 2261–2285 (1994). https://doi.org/10.1029/94WR00757

    Article  Google Scholar 

  16. J. E. Hurtrez, F. Lucazeau, J. Lavé, and J. P. Avouac, “Investigation of the relationships between basin morphology, tectonic uplift, and denudation from the study of an active fold belt in the Siwalik Hills, Central Nepal,” J. Geophys. Res. 104 (B6), 12779–12796 (1999). https://doi.org/10.1029/1998JB900098

    Article  Google Scholar 

  17. J.E. Hurtrez, “Effect of drainage area on hypsometry from an analysis of small scale drainage basins in the Siwalik Hills (Central Nepal),” Earth Surf. Processes Landforms 24 (9), 799–808 (1999).

    Article  Google Scholar 

  18. I. A. K. Jadoon, Thin-Skinned Tectonics on Continent/Ocean Transitional Crust, Sulaiman Range, Pakistan. Ph.D. Thesis (Geology Dept., Oregon State Univ., USA, 1992), https://ir.library.oregonstate.edu/ downloads/vt150m664

    Google Scholar 

  19. A. Jarvis, H. I. Reuter, A. Nelson, and E. Guevara., Hole-Filled SRTM for the Globe Ver. 4. Available from the CGIAR-CSI SRTM 90 m database, 2008. http://srtm.csi.cgiar.org

  20. A. H. Kazmi and M. Jan, “Geology and Tectonics of Pakistan,” (Graphic Publ., Karachi, Pakistan, 1997).

    Google Scholar 

  21. E. A. Keller and N. Pinter, “Active Tectonics: Earthquakes, Uplift, and Landscape,” (Prentice Hall, New Jersey, USA, 2002).

    Google Scholar 

  22. E. Kirby and K. X. Whipple, “Quantifying differential rock-uplift rates via stream profile analysis,” Geology 29 (5), 415–418 (2001). https://doi.org/10.1130/0091-7613(2001)029<0415:QDRURV>2.0.CO;2

    Article  Google Scholar 

  23. E. Kirby, K. Whipple, W. Tang, and Z. Chen, “Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: Inferences from bedrock channel longitudinal profiles,” J. Geophys. Res. 108 (B4), 1–24 (2003). https://doi.org/10.1029/2001JB000861

    Article  Google Scholar 

  24. M. Z. Khan, B. Khan, S. Awan, G. Khan, and R. Ali, “High-altitude rangelands and their interfaces in Gilgit-Baltistan, Pakistan: Current status and management strategies,” in High-Altitude Rangelands and Their Interfaces in the Hindu Kush Himalayas, (Kathmandu: ICIMOD, 2013).

    Google Scholar 

  25. A. Koch and P. Lohmann, “Quality assessment and validation of digital surface models derived from the Shuttle Radar Topography Mission (SRTM),” in Int. Archives Photogramm. Remote Sens. (Amsterdam. Belgium, 2000), vol. XXXIII, Suppl. B4. https://doi.org/10.1109/IGARSS.2001.978187

  26. W. B. Langbein, “Topographic characteristics of drainage basins,” in Water-Supply Pap. 968-C (U.S. Government Print. Office, Washington, 1947).

    Google Scholar 

  27. N. A. Lifton, “Tectonic, climatic and lithologic influences on landscape fractal dimension and hypsometry: Implications for landscape evolution in the San Gabriel Mountains, California,” Geomorphology 5 (1–2), 77–114 (1992).

  28. M. Lisa, A. A. Khwaja, and M. Q. Jan, “Seismic hazard assessment of the NW Himalayan fold-and-thrust belt (Pakistan): Using probabilistic approach,” J. Earthquake Eng. 11 (2), 257–301 (2007).

    Article  Google Scholar 

  29. S. A. Mahmood, “Analyzing spatial autocorrelation for the hypsometric integral to discriminate neotectonics and lithologies using DEMs and GIS,” GIS Remote Sens. 48 (4), 541–565 (2011).

    Article  Google Scholar 

  30. M. E. Marani, “Geomorphic controls on regional base flow,” Water Resour. Res. 37 (10), 2619–2630 (2001).

    Article  Google Scholar 

  31. J. G. Masek, B. L. Isacks, T. L. Gubbels and E. J. Fieldings, “Erosion and tectonics at the margins of continental plateaus,” J. Geophys. Res. 99 (B7), 13941–13956 (1994). https://doi.org/10.1029/94JB00461

    Article  Google Scholar 

  32. D. Merrits and K. R. Vincent, “Geomorphic response of coastal streams to low, intermediate, and high rates of uplift, Mendocino junction region, northern California,” GSA Bull. 101, 1373–1388 (1989). https://doi.org/10.1130/0016-7606(1989)101

    Article  Google Scholar 

  33. J. P. Muller, “Quantitative assessment of C-band and X-band SRTM datasets over the CEOS-WGCVTMSG test sites and inter-comparison of C-band and DEM with the OS, PANORAMA DTM,” in Proceedings of Workshop “The Shuttle Radar Topography Mission—Data Validation and Applications,” June 14–16, 2005 (Reston, Virginia, 2005).

  34. H. Ohmori, “Changes in the hypsometric curve through mountain building resulting from concurrent tectonics and denudation,” Geomorphology 8 (4), 263–277 (1993).

    Article  Google Scholar 

  35. A. Pedrera, J. V. Pérez-Peña, J. Galindo-Zaldívar, J. M. Azañón, and A. Azor, “Testing the sensitivity of geomorphic indices in areas of low-rate active folding (eastern Betic Cordillera, Spain),” Geomorphology 105, 218–231 (2009).

    Article  Google Scholar 

  36. L. Sklar, The Influence of Ggrain Size, Sediment Supply, and Rock Strength on Rates of River Incision into Bedrock. Ph.D. Thesis (Univ. California, Berkeley, USA, 2003).

  37. N. Snyder, K. Whipple, G. Tucker, and D. Merrits, “Landscape response to tectonic forcing: DEM analysis of stream profiles in the Mendocino triple junction region, northern California,” GSA Bull. 112 (8), 1250–1263 (2000). https://doi.org/10.1130/0016-7606(2000)112<1250:LRTTFD>2.3.CO;2

    Article  Google Scholar 

  38. N. P. Snyder, K. X. Whipple, G. E. Tucker, and D. M. Merrits, “Interactions between onshore bedrock-channel incision and ear- shore wave-base erosion forced by eustasy and tectonics,” Basin Res. 14, 105–127 (2002). https://doi.org/10.1046/j.1365-2117.2002.00169.x

    Article  Google Scholar 

  39. N. P. Snyder, K. X. Whipple, G. E. Tucker, and D. J. Merrits, “Channel response to tectonic forcing: Field analysis of stream morphology and hydrology in the Mendocino triple junction region, northern California,” Geomorphology 53, 97–127 (2003a). https://doi.org/10.1016/S0169-555X(02)00349-5

    Article  Google Scholar 

  40. N. P. Snyder, K. X. Whipple, G. E. Tucker, and D. J. Merrits, “Importance of a stochastic distribution of floods and erosion thresholds in the bedrock river incision problem,” J. Geophys. Res. 39 (2003b). https://doi.org/10.1029/2001WR001057

  41. A. N. Strahler, “Hypsometric (area-altitude) analysis of erosional topography”, GSA Bull. 63 (11), 1117–1142 (1952).

    Article  Google Scholar 

  42. R. A. K. Tahirkheli, M. Mattauer, F. Proust, and P. Tapponier, “The India–Eurasia suture zone in northern Pakistan: Some new data for interpretation at plate scale,” Geodynamics of Pakistan, Ed. by A. Farah and K. A. DeJong (Geol. Surv. Pakistan, 1979), pp. 125–130.

    Google Scholar 

  43. G. E. Tucker and R. L. Bras, “A stochastic approach to modeling the role of rainfall variability in drainage basin evolution,” Water Resour. Res. 36, 1953–1964 (2000). https://doi.org/10.1029/2000WR900065

    Article  Google Scholar 

  44. G. E. Tucker and K. X. Whipple, “Topographic outcomes predicted by stream erosion models: Sensitivity analysis and intermodel comparison,” J. Geophys. Res. 107 (B9), 2179–2194 (2002). https://doi.org/10.1029/2001JB000162

    Article  Google Scholar 

  45. R. C. Walcott and M. A. Summerfield, “Scale dependence of hypsometric integrals: An analysis of southeast African basins,” Geomorphology 96 (1–2), 174–186 (2008).

  46. G. Willgoose, R. L. Bras, and I. Rodriguez-Iturbe, “A coupled channel network growth and hillslope evolution model: I. Theory,” Water Resour. Res. 27 (7), 1671–1684 (1991). https://doi.org/10.1029/91WR00935

    Article  Google Scholar 

  47. G. Willgoose, “A physical explanation for an observed area, slope and elevation relationship for catchments with declining relief,” Water Resour. Res. 30 (2), 151–159 (1994).

    Article  Google Scholar 

  48. G. Willgoose and G. Hancock, “Revisiting the hypsometric curve as an indicator of form and process in transport-limited catchment,” Earth Surf. Processes Landforms 23 (7), 611–623 (1998).

    Article  Google Scholar 

  49. K. X. Whipple and G. E. Tucker, “Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs,” J. Geophys. Res. 104, 17661–17674 (1999). https://doi.org/10.1029/1999JB900120

    Article  Google Scholar 

  50. K. X. Whipple, G. S. Hancock, and R. S. Anderson, “River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation,” GSA Bull. 112 (3), 490–503 (2000). https://doi.org/10.1130/0016-7606(2000)112<490:RIIBMA>2.3.CO;2

    Article  Google Scholar 

  51. K. X. Whipple and G. E. Tucker, “Implications of sediment-flux-dependent river incision models for landscape evolution,” J. Geophys. Res. 107 (B2), 2039–2059 (2002). https://doi.org/10.1029/2000JB000044

    Article  Google Scholar 

  52. K. Whipple, “Bedrock rivers and the geomorphology of active orogens,” Ann. Rev. Earth Planet. Sci. 32, 151–185 (2004). https://doi.org/10.1146/annurev.earth.32.101802.120356

    Article  Google Scholar 

  53. C. W. Wobus, K. V. Hodges, and K. X. Whipple, “Has focused denudation-28 sustained active thrusting at the Himalayan topographic front?” Geology 31, 861–864 (2003). https://doi.org/10.1130/G1973

    Article  Google Scholar 

  54. C. W. Wobus, G. E. Tucker, and R. S. Anderson, “Self-formed bedrock channels,” Geophys. Res. Lett. 33, L18408 (2006). https://doi.org/10.1029/2006GL027182

    Article  Google Scholar 

  55. C. Wobus, K. Whipple, E. Kirby, N. Snyder, J. Johnson, K. Spyropolou, B. T. Crosby, and D. Sheehan, “Tectonics from topography: Procedures, promise and pitfalls,” in Tectonics, Climate and Landscape Evolution, Ed. by Willett S. D. (GSA Spec. Pap., Vol. 398, 2006), pp. 55–74.

    Google Scholar 

  56. Global Digital Elevation Model (GDEM). Ver. 2 (2011). http:// https://asterweb.jpl.nasa.gov/gdem.asp. Accessed January 31, 2016.

  57. ASTER GDEM. https://asterweb.jpl.nasa.gov/gdem.asp. Accessed February 10, 2016.

  58. Landsat Images. https://landsat.gsfc.nasa.gov/. Accessed March 13, 2016.

  59. River Tools Software. Ver. 2.4. http://rivix.com/ in-dex.php. Accessed October 15, 2019.

  60. SRTM 90m Digital Elevation Database. Ver. 4.1. http://www.cgiar-csi.org/data/srtm-90m-digitalelevation-database-v4-1. Accessed September 30, 2013.

  61. Pakistan Meteorology Department (PMD). https://www. pmd.gov.pk/en/. Accessed July 20, 2016.

  62. Water and Power Development Authority (WAPDA). http://www.wapda.gov.pk/. Accessed September 6, 2016.

  63. ArcGIS. https://desktop.arcgis.com/en/arcmap/. Accessed October18, 2017.

Download references

ACKNOWLEDGMENTS

The authors are thankful to the USGS for providing free SRTM DEM [60] and Landsat Images [58].

Funding

Department of Space Science of University of the Punjab (Pakistan) financed PhD research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Mahmood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmood, S.A., Shahzad, M., Batool, S. et al. Neotectonics from Geomorphic Indices: Highlights from Main Mantle Thrust (Pakistan). Geotecton. 55, 563–583 (2021). https://doi.org/10.1134/S0016852121040117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852121040117

Keywords:

Navigation