Skip to main content
Log in

Peri-Gondwanan Blocks in the Structure of the Southern and Southeastern Framing of the East European Platform

  • Published:
Geotectonics Aims and scope

Abstract

Synthesis of the results of U–Pb dating of detrital zircons (dZr) from the Uppermost Precambrian–Phanerozoic strata of the southern and southeastern framing of the East European Platform (EEP), the Uppermost Precambrian and Cambrian–Ordovician strata of the Southern Urals, Ordovician strata of the Cis-Caspian Sea region and Jurassic coarse strata, and Upper Triassic flysch strata of the Crimean Mountains is presented. The spectra of U‒Pb ages of detrital zircons from the above objects were correlated with similar dates obtained for sandstones of the Uppermost Precambrian and Cambrian–Ordovician strata participating in the structure of peri-Gondwanan terranes. It was shown that the belt of peri-Gondwanan terranes, known in the northern Appalachians, Western and Central Europe, Middle East, Northern Africa, and Arabia, stretches into the northern part of the Cis-Black Sea region, the Cis-Caucasus, and Cis-Caspian Sea regions, forming the basements of the epi-Paleozoic Scythian and Turan platforms, and is traced further eastward up to the Southern Transuralian region, being involved into the structure of the Paleozoids of the Southern Urals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. G. N. Aleksandrova, K. G. Erofeeva, N. B. Kuznetsov, T. V. Romanyuk, V. S. Sheshukov, A. S. Dubenskii, S. M. Lyapunov, A. I. Iakovleva, and V. N. Pan’kov, “The first results of U–Pb dating of detrital zircons from the Oligocene of the southeastern part of the Voronezh Anteclise and their importance for paleogeography,” Dokl. Earth Sci. 494 (1), 675–679 (2020). https://doi.org/10.31857/S2686739720090042

    Article  Google Scholar 

  2. G. V. Artemenko, L. V. Shumlyanskyy, and A. Yu. Bekker, “The first data on Eoarchean (3.95 Ga) rocks in the basement of the Azov Block, Ukrainian Shield,” in Fundamental Problems of Tectonics and Geodynamics (GEOS, Moscow, 2020), pp. 20–26.

  3. G. V. Artemenko, L. V. Shumlyanskyy, and S. A. Vaild, “Lower age boundary of the formation of metaterrigenous rocks of the Vysokopillya greenstone structure (Middle-Dnieper region of the Ukrainian Shield),” Geol. J. 371 (2), 3–17 (2020). https://doi.org/10.30836/igs.1025-6814.2020.2.199105

    Article  Google Scholar 

  4. A. D. Arkhangelsky, “Introduction to the geology of European Russia,” in Tectonics and Evolution of the Russian Platform (Gos. Izd., Moscow–Petrograd, 1923. Pt. 1) [in Russian].

  5. A. D. Arkhangelsky, Geological Structure of the USSR. European and Central Asian Parts (Gos. Nauchno-Tekhn. Geol.-Razved. izd., Moscow–Leningrad, 1932) [in Russian].

  6. A. S. Baluev, “Geodynamics of the Riphean stage in the evolution of the northern passive margin of the East European Craton,” Geotectonics 40, 183–196 (2006).

    Article  Google Scholar 

  7. A. S. Baluev, V. A. Zhuravlev, E. N. Terekhov, and E. S. Przhiyalgovsky, “Tectonics of the White Sea and adjacent areas,” in Explanatory Note to the 1 : 1500 000 Tectonic Map of the White Sea and Adjacent Areas, Ed. by M.G. Leonov (Trans. Geol. Inst., 2012, Vol. 597) (GEO, Moscow, 2012) [in Russian].

  8. A. A. Bogdanov, “The Herthynian structure of the western slope of the Southern Urals and the southeastern margin of the Russian Platform,” in Problems of Theoretical an Applied Geology. 1944, Vol. 4), pp. 5–40.

  9. The Greater Caucasus in the Alpian Epoch, Ed. by Yu. G. Leonov (GEOS, Moscow, 2007) [in Russian].

    Google Scholar 

  10. Geology of the USSR. Vol. 8. Crimea, Ed. by M. V. Muratov (Nedra, Moscow, 1969) [in Russian].

    Google Scholar 

  11. B. G. Golionko and O. A. Artemova, “Late Cambrian and Paleozoic deformations in the eastern part of the Bashkirian Anticlinorium (Southern Urals),” Byull. Mosk. O–va Ispyt. Prir., Otd. Geol. 91 (6), 3–10, (2016).

    Google Scholar 

  12. B. G. Golionko and A. V. Ryazantsev, “Deformations and the sequence of formation of the structures in the northern part of the Maksutovo metamorphic complex (Southern Urals),” Izv. VUZov. Ser. Geol. Razved., No. 1, 17–26 (2018).

  13. B. G. Golionko, A. V. Ryazantsev, K. E. Degtyarev, N. A. Kanygina, N. B. Kuznetsov, V. S. Sheshukov, A. S. Dubenskii, and B. I. Gareev, “Paleozoic age of metaterrigenous sequences of the Maksyutov metamorphic complex (Southern Urals): Results of U–Pb dating of detrital zircons,” Dokl. Earth Sci. 493 (2), 578–583 (2020). https://doi.org/10.31857/S2686739720080071

    Article  Google Scholar 

  14. V. M. Gorozhanin, V. N. Puchkov, E. N. Gorozhanina, N. D. Sergeeva, T. V. Romanyuk, and N. B. Kuznetsov, “The Navysh graben-rift of the South Urals as a fragment of the Early Proterozoic aulacogen,” Dokl. Earth Sci. 458, 1052–1057 (2014). https://doi.org/10.7868/S0869565214260168

    Article  Google Scholar 

  15. K. E. Degtyarev, “Tectonic evolution of Early Paleozoic island-arc systems and the formation of continental crust formation in the Caledonides of Kazakhstan,” in Trans. Geol. Inst. Russ. Acad. Sci. Vol. 602 (GEOS, Moscow, 2012) [in Russian].

  16. K. E. Degtyarev, V. P. Kovach, A. A. Tret’yakov, A. B. Kotov, and Kuo-Lun Wang, “Age and sources of Precambrian zircon–rutile deposits in the Kokchetav sialic massif (northern Kazakhstan),” Dokl. Earth Sci. 464, 1005–1009 (2015). https://doi.org/10.7868/S0869565215290186

    Article  Google Scholar 

  17. K. E. Degtyarev, T. Yu. Tolmacheva, A. A. Tretyakov, N. B. Kuznetsov, E. A. Belousova, and T. V. Romanyuk, “Structure, age, and settings of formation of Ordovician complexes of the northwestern frame of the Kokchetav massif, northern Kazakhstan,” Stratigr. Geol. Correl. 26, 514–533 (2018).

    Article  Google Scholar 

  18. S. N. Ivanov, V. N. Puchkov, K. S. Ivanov, et al., Formation of the Ural Earth’s Crust (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  19. K. S. Ivanov, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (Inst. Geol. Geokhim. Ural. Otd. Ross. Akad.Nauk, Ekaterinburg, 1998).

  20. Yu. V. Kazantsev, Structural Geology of the Cis-Uralian Foredeep (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  21. M. A. Kamaletdinov, Nappe Structures of the Urals (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  22. V. A. Kamzolkin, A. V. Latyshev, Yu. P. Vidyapin, M. L. Somin, A. I. Smul’skaya, and S. D. Ivanov, “Late Vendian complexes in the structure of metamorphic basement of the fore range zone, Greater Caucasus,” Geotectonics 52, 331–345 (2018). https://doi.org/10.7868/S0016853X18030037

    Article  Google Scholar 

  23. A. P. Karpinsky, Essays on the Geological Evolution of European Russia (1883–1894) (Voennaya Tipogr., Petrograd, 1919) [in Russian].

    Google Scholar 

  24. S. N. Krauze and V. A. Maslov, Ordovician, Silurian, and Devonian on the Western Slope of the Bashkir Urals) (Bashkir. Fil. Akad. Nauk SSSR, Ufa, 1961) [in Russian].

  25. B. M. Keller, “The Paleozoic flysch formation in the Zilair synclinorium (Southern Urals) and similar formations,“ in Trans. Geol. Inst. USSR Acad. Sci. Vol. 104 (Izd. Akad. Nauk SSSR, Moscow, 1949) [in Russian].

  26. N. B. Kuznetsov, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (Inst. Fiz. Zemli Ross. Akad. Anuk, Moscow, 2009).

  27. N. B. Kuznetsov, L. M. Natapov, E. A. Belousova, U. L. Griffin, S. Y. O’Relly, K. V. Kulikova, A. A. Soboleva, and O. V. Udoratina, “The first results of U/Pb dating and isotope geochemical studies of detrital zircons from the Neoproterozoic sandstones of the southern Timan (Djejim–Parma Hill),” Dokl. Earth Sci. 435, 1676–1684 (2010).

    Article  Google Scholar 

  28. N. B. Kuznetsov, S. Yu. Orlov, E. L. Miller, A. V. Shatsillo, A. V. Dronov, A. A. Soboleva, O. V. Udoratina, and J. Gehrels, First results of U/Pb dating of detrital zircons from Early Paleozoic and Devonian sandstones of the Baltic-Ladoga region (south Ladoga Area),” Dokl. Earth Sci. 438 (2), 759–765 (2011).

    Article  Google Scholar 

  29. N. B. Kuznetsov, E. A. Belousova, K. E. Degtyarev, E. S. Pyzhova, A. V. Maslov, V. M. Gorozhanin, E. N. Gorozhanina, and T. V. Romanyuk, “First results of U–Pb dating of detrital zircons from the Upper Ordovician sandstones of the Bashkir Uplift (Southern Urals),” Dokl. Earth Sci. 457 (2), 325–330 (2016). https://doi.org/10.7868/S0869565216110189

    Article  Google Scholar 

  30. N. B. Kuznetsov, E. A. Belousova, M. T. Krupenin, T. V. Romanyuk, and A. V. Maslov, “The results of geochronological and isotope–geochemical study of zircons from tuff of the Sylvitsa Group (western slope of the Middle Urals): The origin of ash layers in Vendian rocks of the East,” Dokl. Earth Sci. 473, 359–362 (2017).

    Article  Google Scholar 

  31. N. B. Kuznetsov, E. A. Belousova, T. V. Romanyuk, K. E. Degtyarev, A. V. Maslov, V. M. Gorozhanin, E. N. Gorozhanina, and E. S. Pyzhova, “First results of U/Pb dating of detrital zircons from middle Riphean sandstones of the Zigalga Formation, South Urals,” Dokl. Earth Sci. 475, 863–867 (2017).

    Article  Google Scholar 

  32. N. B. Kuznetsov, V. M. Gorozhanin, E. A. Belousova, K. E. Degtyarev, E. N. Gorozhanina, T. V. Romanyuk, and N. A. Kanygina, “First results of U–Pb dating of detrital zircons from the Ordovician clastic sequences of the Sol-Iletsk Block, East European Platform,” Dokl. Earth Sci. 473, 381‒385 (2017). https://doi.org/10.7868/S0869565217040156

    Article  Google Scholar 

  33. N. B. Kuznetsov, A. V. Maslov, E. A. Belousova, T. V. Romanyuk, M. T. Krupenin, V. M. Gorozhanin, E. N. Gorozhanina, E. S. Seregina, and V. A. Tsel’movich, “The first U–Pb (LA-ICP-MS) isotope data of detrital zircons from the basal levels of the Riphean stratotype,” Dokl. Earth Sci. 451 (1), 724–728 (2013).

    Article  Google Scholar 

  34. N. B. Kuznetsov, T. V. Romanyuk, A. V. Shatsillo, S. Yu. Orlov, I. V. Golovanova, K. N. Danukalov, and I. S. Ipat’eva, “The first results of mass U–Pb isotope dating (LA-ICP-MS) for detrital zircons from the Asha Group, South Urals: Paleogeography and paleotectonics,” Dokl. Earth Sci. 447, 1240–1246 (2012).

    Article  Google Scholar 

  35. N. B. Kuznetsov, T. V. Romanyuk, A. V. Shatsillo, I. V. Golovanova, K. N. Danukalov, and J. Meert, “Age of detrital zircons from the Asha Group of the South Urals: confirmation of spatial junction of the Uralian margin of Baltica and Queensland margin of Australia in Rodinia structure (“Australia upside down conception”),” Litosfera, No. 4, 59–77 (2012).

    Google Scholar 

  36. N. B. Kuznetsov, T. V. Romanyuk, A. V. Shatsillo, S. Yu. Orlov, V. M. Gorozhanin, E. N. Gorozhanina, E. S. Seregina, N. S. Ivanova, and J. Meert, “The first results of the U/Pb-dating (LA-ICP-MS) of the detrital zircons from sandstones of the Upper Emsian Takata Formation, the Western Urals (with a problem of an ultimate sources of the Uralian diamond placers),” Dokl. Earth Sci. 455 (2), 370–375 (2014).https://doi.org/10.7868/S0869565214100181

    Article  Google Scholar 

  37. N. B. Kuznetsov and A. V. Shatsillo, “The first finds of skeletal fossils in the Kuk-Karauk formation of the Asha Group (Southern Urals) and their significance for determining the beginning of the Pre-Uralian-Timanian orogeny,” Dokl. Earth Sci. 440, 1239–1244 (2011).

    Article  Google Scholar 

  38. The Proterozoic Ladoga Structure (Geology, Deep Structure, and Minerageny), Ed. by N. V. Sharov (KarNTs RAN, Petrozavodsk, 2020) [in Russian].

  39. Yu. G. Leonov, Yu. A. Volozh, M. P. Antipov, V. A. Bykadorov, and T. N. Kheraskova, Consolidated Crust of the Caspian Region: Experience of Demarcation) (GEOS, Moscow, 2010) [in Russian].

  40. A. V. Maslov, G. A. Mizens, G. M. Vovna, E. S. Pyzhova, N. B. Kuznetsov, V. I. Kiselev, Yu. L. Ronkin, A. Z. Bikbaev, and T. V. Romanyuk, “On some general peculiarities of formation of terrigenous deposits in the West Urals: A synthesis of the data on U–Pb isotope dating of detrital zircons and geochemical studies of clay rocks,” Litosfera, No. 3, 27–46 (2016).

    Google Scholar 

  41. V. A. Maslov, R. R. Yakupov, O. V. Artyushkova, and T. M. Mavrinskaya, “New data on the Paleozoic stratigraphy of the Kraka massif zone (Southern Urals).” in Yearbook-1997 (Inst. Geol. UNTs RAN, Ufa, 1997), pp. 29–36.

  42. The 5 000 000 International Tectonic Map of the Europe, Ed. by Yu. G. Leonov and V. E. Khain (Geol. Inst. Ross. Akad. Nauk, Kom. Geol. Karty Mira, Vseross. Nauchno-Issled. Geol. Inst., UNESCO. 1996. 3rd ed.).

  43. G. A. Mizens, Upper Paleozoic Flysch of the Western Urals (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg: 1997) [in Russian].

    Google Scholar 

  44. V. S. Mileev, E. Yu. Baraboshkin, S. B. Rozanov, and M. A. Rogov, Cimmerian and Alpine tectonics of the Crimean Mountains,” Byull. Mosk. O–va Ispyt. Prir., Otd. Geol. 81 (3), 22–33 (2006).

    Google Scholar 

  45. V. S. Mileev, E. Yu. Baraboshkin, S. B. Rozanov, and M. A. Rogov, “Tectonics and geodynamic evolution of the Crimean Mountains,” Byull. Mosk. O–va Ispyt. Prir., Otd. Geol. 84 (3), 3–22 (2009).

    Google Scholar 

  46. D. V. Nalivkin, Geological History of the Urals (Sverdlovsk-GIZ, Sverdlovsk, 1943) [in Russian].

    Google Scholar 

  47. A. M. Nikishin, G. V. Makhatadze, R. R. Gabdullin, A. K. Khudoley, and E. V. Rubtsova, “Bitak conglomerates as a clue for understanding the Middle Jurassic geological history of Crimea,” Moscow Univ. Geol. Bull. 72 (1), 18–27 (2017).

    Article  Google Scholar 

  48. A. M. Nikishin, T. V. Romanyuk, D. V. Moskovskii, N. B. Kuznetsov, A. A. Kolesnikova, A. S. Dubensky, V. S. Sheshukov, and S. M. Lyapunov, “Upper Triassic sequences of the Crimean Mountains: First results of U–Pb dating of detrital zircons,” Moscow Univ. Geol. Bull., 75, 220–236 (2020).

    Article  Google Scholar 

  49. A. A. Nosova, A. A. Voznyak, S. V. Bogdanova, K. A. Savko, N. M. Lebedeva, A. V. Travin, D. S. Yudin, L. Page, A. N. Larionov, and A. V. Postnikov, “Early Cambrian Syenite and Monzonite Magmatism in the Southeast of the East European Platform: Petrogenesis and Tectonic Setting,” Petrology 27 (4), 329–369 (2019). https://doi.org/10.31857/S0869-5903274357-400

    Article  Google Scholar 

  50. D. G. Ozhiganov, “Stratigraphy and facies features of Silurian deposits of the western slope of the Southern Urals,” Uch. Zap. BashPGI IV, 55–92 (1955).

    Google Scholar 

  51. The Orenburg Tectonic Node: Geology and Petroleum Potential, Ed. by Yu. A. Volozh and V. S. Parasyna (Nauchn. Mir, Moscow, 2013) [in Russian].

    Google Scholar 

  52. A. V. Peyve, “The main types of deep faults,” Izv. AN SSSR. Ser. Geol., No. 1, 90–105 (1956).

  53. A. S. Perfil’ev, Formation of the Earth’s Crust in the Ural Eugeosyncline (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  54. V. N. Puchkov, Bathyal Complexes of Passive Margins of Geosynclinal Zones (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  55. V. N. Puchkov, Paleogeodynamics of the South and Middle Urals (Dauriya, Ufa, 2000) [in Russian].

    Google Scholar 

  56. V. N. Puchkov, Geology of the Urals and Cis-Ural Region: Actual Problems of Stratigraphy, Tectonics, Geodynamics, and Metallogeny (DizainPoligrafServis, Ufa, 2010) [in Russian].

  57. T. V. Romanyuk, A. V. Maslov, N. B. Kuznetsov, E. A. Belousova, Yu. L. Ronkin, M. T. Krupenin, V. M. Gorozhanin, E. N. Gorozhanina, and E. S. Seregina, “First data on LA-ICP-MS U/Pb zircon geochronology of Upper Riphean sandstones of the Bashkir Anticlinorium (South Urals),” Dokl. Earth Sci. 452, 997–1000 (2013).https://doi.org/10.7868/S0869565213310174

    Article  Google Scholar 

  58. T. V. Romanyuk, N. B. Kuznetsov, E. A. Belousova, V. M. Gorozhanin, and E. N. Gorozhanina, “Paleotectonic and paleogeographic conditions for the accumulation of the Lower Riphean Ai formation in the Bashkir uplift (Southern Urals): The terranechrone® detrital zircon study,” Geodynam. Tectonophys., No. 1, 1–37 (2018). https://doi.org/10.5800/GT-2018-9-1-0335

  59. T. V. Romanyuk, E. A. Belousova, N. B. Kuznetsov, V. M. Gorozhanin, and E. N. Gorozhanina, “A search for sources of the detritus of Ordovician sandstones from the Sol-Iletsk Block (Ordovician-2 borehole) based on the first data of the geochemical and Lu/Hf isotopic systematics of zircons,” Dokl. Earth Sci. 487, 795–799 (2019). https://doi.org/10.31857/S0869-5652487182-87

    Article  Google Scholar 

  60. T. V. Romanyuk, N. B. Kuznetsov, V. N. Puchkov, N. D. Sergeeva, V, I. Paverman, V. M. Gorozhanin, and E. N. Gorozhanina, Age and stratigraphic position of sedimentary sequences of the Bagrush Mountains (Southern Urals) based on the results of U–Pb dating (LA–ICP–MS) of detrital zircons,” Dokl. Earth Sci. 493, 593–599 (2020). https://doi.org/10.31857/S2686739720080186

    Article  Google Scholar 

  61. S. V. Rud’ko, N. B. Kuznetsov, E. A. Belousova, and T. V. Romanyuk, “Age, Hf-isotope systematic of detrital zircons and the sources of conglomerates of the Southern Demerdzhi Mountain, Mountainous Crimea,” Geotectonics 53, 569–587 (2019). https://doi.org/10.31857/S0016-853X2019536-61

    Article  Google Scholar 

  62. S. V. Rud’ko, Extended Abstract of Candidate Dissertation in Geology and Mineralogy (Geol. Inst. Ross. Akad. Nauk, Moscow, 2014).

  63. S. V. Ruzhentsev, “Marginal ophiolitic allochthones (tectonic origin and structural position),” in Trans. Geol. Inst. USSR Acad. Sci. Vol. 283 (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  64. A. V. Ryazantsev, A. A. Belova, A. A. Razumovsky, and N. B. Kuznetsov, “Geodynamic formation settings of Ordovician and Devonian dike complexes in ophiolitic sections of the Southern Urals and Mugodzhary,” Geotectonics 46, 142–169 (2012).

    Article  Google Scholar 

  65. A. V. Ryazantsev, D. V. Borisenok, S. V. Dubinina, E. A. Kalinina, N. B. Kuznetsov, E. A. Matveeva, and V. A. Aristov, “The general structure of the Sakmara Zone in the Southern Urals in the area of the Mednogorsk sulfide deposits,” in Regional Tectonics of the Urals, Kazakhstan, and Tien Shan: A Review (Nauka, Moscow, 2005, Vol. 1), (Trans. Geol. Inst. Russ. Acad. Sci. Vol. 561), pp. 84–134.

  66. A. V. Ryazantsev, A. A. Razumovskii, N. B. Kuznetsov, E. A. Kalinina, S. V. Dubinina, and V. A. Aristov, “Geodynamics nature of serpentinite mélanges in the Southern Urals,” Byull. Mosk. O–va Ispyt. Prir., Otd. Geol. 82 (1), 32–47 (2007).

    Google Scholar 

  67. A. V. Ryazantsev, S. V. Dubinina, N. B. Kuznetsov, and A. A. Belova, “Ordovician lithotectonic complexes in allochthons of the Southern Urals,” Geotectonics 42, 368–395 (2008).

    Article  Google Scholar 

  68. A. V. Ryazantsev, N. B. Kuznetsov, K. E. Degtyarev, T. V. Romanyuk, T. Yu. Tolmacheva, and E. A. Belousova, “A reconstruction of a Vendian–Cambrian active continental margin within the Southern Urals: Results of detrital zircons studying from Ordovician terrigenous rocks,” Geotectonics 53 485–499 (2019).

    Article  Google Scholar 

  69. D. N. Salikhov and R. R. Yakupov, “Geological position and composition of basalts in the Inter-Kraka Zone, the Northern Zilair Synclinorium,” Litosfera, No. 2, 60–67 (2005).

    Google Scholar 

  70. M. L. Somin, L. M. Natapov, E. A. Belousova, A. Krener, A. N. Konilov, and V. A. Kamzolkini, “A pseudobasement in the pre-Alpine structure of the Peredovoi Range, North Caucasus,” Dokl. Earth Sci. 450 (2), 487–591 (2013). https://doi.org/10.7868/S0869565213160214

    Article  Google Scholar 

  71. Tectonics of the Urals. Explanatory Note to the 1 : 1 000 000 Tectonic Map of the Urals, Ed. by A. V. Peive, S. N. Ivanov, V. M. Necheukhin, A. S. Perfil’ev, and V. N. Puchkov (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  72. V. E. Khain, Tectonics of Continents and Oceans (Nauchn. Mir, Moscow, 2001) [in Russian].

    Google Scholar 

  73. I. V. Khvorova, T. A. Voznesenskaya, B. P. Zolotarev, et al., “Formations of the Sakmara allochthon,” in Trans. Geol. Inst. USSR Acad. Sci. Vol. 311 (Nauka, Moscow, 1978).

    Google Scholar 

  74. I. V. Khvorova, “Flysch and lower molasse formations of the Southern Urals,” in Trans. Geol. Inst. USSR Acad. Sci. Vol. 37 (Akad. Nauk SSSR, Moscow, 1961) [in Russian].

  75. N. P. Kheraskov, “Principles of compilation of tectonic maps of folded areas of the Southern Urals,” Izv. Akad. Nauk SSSR. Ser. Geol., No. 5, 121–134 (1948).

  76. N. P. Kheraskov and A. S. Perfil’ev, “The main features of the geosynclinal structures of the Urals,” in Problems of Regional Tectonics of Eurasia, Ed. by N. P. Kheraskov (Izd. Akad. Nauk SSSR, Moscow, 1963), pp. 35–63. (Trans. Geol. Inst. USSR Acad. Sci. 1963. Vol. 92).

  77. B. I. Chuvashov, “Dynamics of the evolution of the Cis-Uralian Foredeep,” Geotectonics 32 (3), 186–200 (1998).

    Google Scholar 

  78. E. V. Chibrikova, Stratigraphy of the Devonian and More Ancient Paleozoic Deposits of the Southern Ural and Cis-Urals Based on Plant Microfossils (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  79. A. V. Chistyakova, R. V. Veselovskiy, D. V. Semenova, V. P. Kovach, E. V. Adamskaya,and A. M. Fetisova, “Stratigraphic Correlation of Permian–Triassic Red Beds, Moscow Basin, East European Platform: First Detrital Zircon U–Pb Dating Results,” Dokl Earth Sci. 492 (1), 306–310 (2020). https://doi.org/10.31857/S2686739720050060

    Article  Google Scholar 

  80. N. S. Shatsky, “The main features of the structure and development of the East European Platform,” Izv. Akad. Nauk SSSR. Ser. Geol., No. 1, 5–62 (1946).

  81. N. S. Shatsky, “Riphean era and Baikalian Folding,” in Academician N.S. Shatsky: Selected Papers (Izd. Akad. Nauk SSSR, Moscow, 1963. Vol. 1), pp. 600–619.

  82. R. R. Yakupov, T. M. Mavrinskaya, and A. N. Abramova, Paleontological Substantiation of the Paleozoic Stratigraphy Scheme of the Northern Part of the Zilair Megasynclinorium (Ekaterinburg, 2002) [in Russian].

    Google Scholar 

  83. A. L. Yanshin, “On the subsidence of the Ural fold system to the south and the tectonic origin of the South Emba Uplift,” Byull. Mosk. O–va Ispyt. Prir., Otd. Geol. 30 (5), 51–73 (1955).

    Google Scholar 

  84. A. Abbo, D. Avigad, and A. Gerdes, “Crustal evolution of Peri-Gondwana crust into present day Europe: The Serbo-Macedonian and Rhodope massifs as a case study,” Lithos 356–357, 105295 (2020). https://doi.org/10.1016/j.lithos.2019.105295

    Article  Google Scholar 

  85. I. Balintoni and C. Balica, “Peri-Amazonian provenance of the Euxinic Craton components in Dobrogea and of the North Dobrogean Orogen components (Romania): A detrital zircon study,” Precambrian Res. 278, 34–51 (2016). https://doi.org/10.1016/j.precamres.2016.03.008

    Article  Google Scholar 

  86. I. Balintoni, C. Balica, M. N. Ducea, and H.-P. Hann, “Epi-Gondwanan terranes in the Romanian Carpathians: A review of their spatial distribution, origin, provenance, and evolution,” Geosci. Front. 5, 395–411 (2014). https://doi.org/10.1016/j.gsf.2013.09.002

    Article  Google Scholar 

  87. I. Balintoni, C. Balica, A. Seghdi, and M. N. Ducea, “Peri-Amazonian provenance of the Central Dobrogea terrane (Romania) attested by U/Pb detrital zircon age patterns,” Geol. Carpatica 62 (4), 299–307 (2011). https://doi.org/10.2478/v10096-011-0023-x

    Article  Google Scholar 

  88. E. A. Belousova, S. Walters, W. L. Griffin, S. Y. O’ Reilly, and N. I. Fisher, “Igneous zircon: trace element compositions as indicators of source rock type,” Contrib. Mineral. Petrol. 143 (5), 602–622 (2002). https://doi.org/10.1007/s00410-002-0364-7

    Article  Google Scholar 

  89. S. V. Bogdanova, B. Bingen, R. Gorbatschev, T. N. Kheraskova, V. I. Kozlov, V. N. Puchkov, and Yu. A. Volozh, “The East European Craton (Baltica) before and during the assembly of Rodinia,” Precambrian Res. 160 (1–2), 23–45 (2008).

    Article  Google Scholar 

  90. N. Bonev, M. Ovtcharova-Schaltegger, R. Moritz, P. Marchev, A. Ulianov, “Peri-Gondwanan Ordovician crustal fragments in the high-grade basement of the Eastern Rhodope Massif, Bulgaria: Evidence from U‒Pb LA-ICP-MS zircon geochronology and geochemistry,” Geodinam. Acta 26 (3–4), 207–229 (2013). https://doi.org/10.1080/09853111.2013.858942

    Article  Google Scholar 

  91. S. Claesson, G. Artemenko, S. Bogdanova, and L. Shumlyanskyy, “Archean Crustal Evolution in the Ukrainian Shield,” in Earth’s Oldest Rocks, Ed. by M. van Kranendonk, V. Bennett, and E. Hoffmann (Elsevier, N.Y., USA, 2019, 2nd ed.), pp. 837–854. https://doi.org/10.1016/B978-0-444-63901-1.00033-2

    Book  Google Scholar 

  92. S. Claesson, E. Bibikova, L. Shumlyanskyy, B. Dhuime, and C. Hawkesworth, “The oldest crust in the Ukrainian Shield – Eoarchean U–Pb ages and Hf–Nd constraints from enderbites and metasediments,” in Continent Formation Through Time, Ed. by N. M. W. Roberts, M. van Kranendonk, S. Parman, S. Shirey, and P. D. Clift (Spec. Publ.—Geol. Soc. London, 2014. Vol. 389), pp. 227–259. https://doi.org/10.1144/SP389.9

    Book  Google Scholar 

  93. E. Cowgill, A. M. Forte, N. Niemi, B. Avdeev, A. Tye, C. Trexler, Z. Javakhishvili, M. Elashvili, and T. Godoladze, “Relict basin closure and crustal shortening budgets during continental collision: An example from Caucasus sediment provenance,” Tectonics 35, 2918–2947 (2016). https://doi.org/10.1002/2016TC004295

    Article  Google Scholar 

  94. K. Degtyarev, A. Yakubchuk, A. Tretyakov, A. Kotov, and V. Kovach, “Precambrian geology of the Kazakh Uplands and Tien Shan: An overview,” Gondwana Res. 47, 44–75 (2017). https://doi.org/10.1016/j.gr.2016.12.014

    Article  Google Scholar 

  95. I. Gamkrelidze, D. Shengelia, G. Chichinadze, Y.‑H. Lee, A. Okrostsvaridze, G. Beridze, and K. Vardanashvili, “U–Pb LA-ICP-MS dating of zoned zircons from the Greater Caucasus pre-Alpine crystalline basement: Evidence for Cadomian to Late Variscan evolution,” Geol. Carpathica 71 (3), 249–263 (2020).

    Article  Google Scholar 

  96. W. L. Griffin, E. A. Belousova, and S. Y. O’ Reilly, “Terrane chron analysis of zircons from Western Australian samples record,” Western Australia Geol. Surv. 4 (2007).

  97. E. Haug, “Les géosynclinaux et lcs aires continentals, “Bull. Soc. Geol. France. Ser. 28, 617–711 (1900).

    Google Scholar 

  98. B. K. Horton, J. Hassanzadeh, D. F. Stockli, G. J. Axen, R. J. Gillis, B. Guest, A. Amini, M. D. Fakhari, S. M. Zamanzadeh, and M. Grove, “Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronostratigraphy and collisional tectonics,” Tectonophysics 451, 97–122 (2008). https://doi.org/10.1016/j.tecto.2007.11.063

    Article  Google Scholar 

  99. B. Kober, A. Kalt, M. Hanel, and R. T. Pidgeon, “SHRIMP dating of zircons from high-grade metasediments of the Schwarzwald/SW-Germany and implications for the evolution of the Moldanubian basement,” Contrib. Mineral. Petrol. 147 (3), 330–345 (2004). https://doi.org/10.1007/s00410-004-0560-8

    Article  Google Scholar 

  100. V. Kovach, K. Degtyarev, A. Tretyakov, A. Kotov, E. Tolmacheva, K.-L. Wang, S.-L. Chung, H.-Y. Lee, and B.-M. Jahn, “Sources and provenance of the Neoproterozoic placer deposits of the Northern Kazakhstan: Implication for continental growth of the western central Asian orogenic belt,” Gondwana Res. 47, 28–43 (2017). https://doi.org/10.1016/j.gr.2016.09.012

    Article  Google Scholar 

  101. N. B. Kuznetsov, E. A. Belousova, W. L. Griffin, S. Y. O’Reilly, T. V. Romanyuk, and S. V. Rud’ko, “Pre-Mesozoic Crimea as a continuation of the Dobrogea platform: Insights from detrital zircons in Upper Jurassic conglomerates, Mountainous Crimea,” Int. J. Earth Sci. 8 (7), 2407–2428 (2019). https://doi.org/10.1007/s00531-019-01770-2

    Article  Google Scholar 

  102. N. M. Levashova, M. L. Bazhenov, J. G. Meert, N. B. Kuznetsov, I. V. Golovanova, K. N. Danukalov, and N. M. Fedorova, “Paleogeography of Baltica in the Ediacaran: Paleomagnetic and geochronological data from the clastic Zigan Formation, South Urals,” Precambrian Res. 236, 16–30 (2013). https://doi.org/10.1016/j.precamres.2013.06.006

    Article  Google Scholar 

  103. U. Linnemann, A. Gerdes, K. Drost, and B. Buschmann, “The continuum between Cadomian orogenesis and opening of the Rheic Ocean: Constraints from LA-ICP-MS U–Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, NE Bohemian massif, Germany),” in The Evolution of the Rheic Ocean: From Avalonian-Cadomian Active Margin to Alleghenian-Variscan Collision, Ed. by U. Linnemann, R. D. Nance, P. Kraft, and G. Zulauf (GSA Spec. Pap. 2007, Vol. 423), pp. 61–96.

    Book  Google Scholar 

  104. F. Mayringer, P. J. Treloar, A. Gerdes, F. Finger, and D. Shengella, “New age data from the Dzirula massif, Georgia: Implications for the evolution of the Caucasian Variscides,” Am. J. Sci. 311, 404–441 (2011). https://doi.org/10.2475/05.2011.02

    Article  Google Scholar 

  105. H. S. Moghadam, X. -H. Li, W. L. Griffin, R. J. Stern, T. B. Thomsen, G. Meinhold, R. Aharipour, and S. Y. O’Reilly, “ Early Paleozoic tectonic reconstruction of Iran: Tales from detrital zircon geochronology,” Lithos 268–271, 87–101 (2017). https://doi.org/10.1016/j.lithos.2016.09.00

    Article  Google Scholar 

  106. J. B. Murphy and R. D. Nance, “The Pangea conundrum,” Geology 36, 703–706 (2008). https://doi.org/10.1130/G24966A.1

    Article  Google Scholar 

  107. R. D. Nance and U. Linnemann, “The Rheic Ocean: Origin, evolution, and significance,” GSA Today 18 (12), 4–12 (2009). https://doi.org/10.1130/GSATG24A.1

    Article  Google Scholar 

  108. A. M. Nikishin, M. Wannier, A. S. Alekseev, O. A. Almendinger, P. A. Fokin, R. R. Gabdullin, A. K. Khudoley, L. F. Kopaevich, A. V. Mityukov, E. I. Petrov, and E. V. Rubtsova, “Mesozoic to recent geological history of southern Crimea and the Eastern Black Sea region,” in Tectonic Evolution of the Eastern Black Sea and Caucasus, Ed.by M. Sosson, R. A. Stephenson, and S. A. Adamia (Spec. Publ.—Geol. Soc. London, 2015. Vol. 428), pp. 241–264. https://doi.org/10.1144/SP428.1

  109. A. I. Okay, D. Altiner, and A. M. Kilic, “Triassic Triassic limestone, turbidite and serpentinite—Cimmeride orogeny in the Central Pontides,” Tectonics 152 (3), 460–479 (2015). https://doi.org/10.1017/S0016756814000429

    Article  Google Scholar 

  110. G. Paoli, H. H. Stokke, S. Rocchi, H. Sirevaag, A. K. Ksienzyk, J. Jacobs, J. Košler, “Basement provenance revealed by U–Pb detrital zircon ages: A tale of African and European heritage in Tuscany, Italy,” Lithos 277, 376–387 (2017). https://doi.org/10.1016/j.lithos.2016.11.017

    Article  Google Scholar 

  111. S. A. Pisarevsky, J. B. Murphy, P. A. Cawood, and A. S. Collins, “Late Neoproterozoic and Early Cambrian palaeogeography: models and problems,” in West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region, Ed.by R. J. Pankhurst, R. A. J. Trouw, B. B. Brito Neves, and M. J. De Wit (Spec. Publ.—Geol. Soc. London, 2008. Vol. 294), pp. 9–31. https://doi.org/10.1144/SP294.2

  112. P. Poprawa, E. Krzeminska, J. Paczesna, and R. Amstrong, “Geochronology of the Volyn volcanic complex at the western slope of the East European Craton – Relevance to the Neoproterozoic rifting and the break-up of Rodinia/Pannotia,” Precambrian Res. 346, 105817 (2020). https://doi.org/10.1016/j.precamres.2020.105817

    Article  Google Scholar 

  113. Y. Rolland, M. Hassig, D. Bosch, M. J. M. Meijers, M. Sosson, O. Bruguier, Sh. Adamia, and N. Sadradze, “A review of the plate convergence history of the East Anatolia–Transcaucasus region during the Variscan: Insights from the Georgian basement and its connection to the Eastern Pontides,” J. Geodynam. 96, 131–145 (2016). https://doi.org/10.1016/j.jog.2016.03.003

    Article  Google Scholar 

  114. D. A. Ruban, M. I. Al-Husseini, and Y. Iwasaki, “Review of Middle East Paleozoic plate tectonics,” GeoArabia 12 (3), 35–53 (2007).

    Article  Google Scholar 

  115. E. Salin, K. Sundblad, J. Woodard, and H. O' Brien, “The extension of the Transscandinavian Igneous Belt into the Baltic Sea region,” Precambrian Res. 328, 287–308 (2019). https://doi.org/10.1016/j.precamres.2019.04.016

    Article  Google Scholar 

  116. L. Shumlyanskyy, C. Hawkesworth, B. Dhuime, K. Billström, S. Claesson, and C. Storey, 207Pb/206Pb ages and Hf isotope composition of zircons from sedimentary rocks of the Ukrainian shield: Crustal growth of the south-western part of East European craton from Archaean to Neoproterozoic,” Precambrian Res. 260, 39–54 (2015). https://doi.org/10.1016/j.precamres.2015.01.007

    Article  Google Scholar 

  117. L. Shumlyanskyy, C. Hawkesworth, K. Billström, S. Bogdanova, O. Mytrokhyn, R. Romer, B. Dhuime, S. Claesson, R. Ernst, M. Whitehouse, O. Bilan, “The origin of the Palaeoproterozoic AMCG complexes in the Ukrainian Shield: New U–Pb ages and Hf isotopes in zircon,” Precambrian Res. 292, 216–239 (2017). https://doi.org/10.1016/j.precamres.2017.02.009

    Article  Google Scholar 

  118. A. Siehl, “Structural setting and evolution of the Afghan orogenic segment: A review,” in Geological Evolution of Central Asian Basins and the Western Tien Shan Range, Ed.by M.-F. Brunet, T. McCann, E. R. Sobel (Spec. Publ.—Geol. Soc. London, 2015. Vol. 427), pp. 57–88. https://doi.org/10.1144/SP427.8

  119. M. Somin, “Pre-Jurassic basement of the Greater Caucasus: brief overview,” Turkish J. Earth Sci. 20, 545–610 (2011). https://doi.org/10.3906/yer-1008-6

    Article  Google Scholar 

  120. G. M. Stampfli, C. Hochard, C. Verard, C. Wilhem, and J. von Raumer, “The formation of Pangea,” Tectonophysics 595 (8), 1–19 (2013). https://doi.org/10.1016/j.tecto.2013.02.037

    Article  Google Scholar 

  121. L. M. Stepanyuk and S. I. Kurylo, T. I. Dovbush, O. V. Grinchenko, V. O. Syomka, S. M. Bondarenko, and L. V. Shumlyanskyy, “Geochronology of granitoids of the eastern part of the Ingul region (the Ukrainian Shield),” Geochem. Ore Formation 38, 3–13 (2017).https://doi.org/10.15407/gof.2017.38.003

    Article  Google Scholar 

  122. T. Stephan, U. Kroner, and R. L. Romer, “The pre-orogenic detrital zircon record of the Peri-Gondwanan crust,” Tectonics 156 (2), 281–307 (2019). https://doi.org/10.1017/S0016756818000031

    Article  Google Scholar 

  123. E. Suess, The Face of the Earth (Clarendon Press, Oxford, 1908. Vol. 3) [in German].

    Google Scholar 

  124. T. H. Torsvik, “Earth history: A journey in time and space from base to top,” Tectonophysics 760, 293–313 (2019). https://doi.org/10.1016/j.tecto.2018.09.009

    Article  Google Scholar 

  125. A. R. Tye, N. A. Niemi, R. T. Safarov, F. A. Kadirov, and G. R. Babayev, “Sedimentary response to a collision orogeny recorded in detrital zircon provenance of Greater Caucasus foreland basin sediments,” Basin Res. 33 (2), 933–967 (2021). https://doi.org/10.1111/BRE.12499

    Article  Google Scholar 

  126. P. A. Ustaomer, T. Ustaomer, A. Gerdes, and G. Zulauf, “Detrital zircon ages from a Lower Ordovician quartzite of the Istanbul exotic terrane (NW Turkey): evidence for Amazonian affinity,” Int. J. Earth Sci. (Geol. Rund.) 100 (1), 23–41 (2009). https://doi.org/10.1007/s00531-009-0498-1

  127. P. A. Ustaomer, T. Ustaomer, A. H. F. Robertson, and A. Gerdes, “Implications of U–Pb and Lu–Hf isotopic analysis of detrital zircons for the depositional age, provenance and tectonic setting of the Permian–Triassic Palaeotethyan Karakaya Complex, NW Turkey,” Int. J. Earth Sci. 105 (1), 7–38 (2016). https://doi.org/10.1007/s00531-015-1225-8

    Article  Google Scholar 

  128. D. A. Vasey, E. Cowgill, S. M. Roeske, N. Niemi, T. Godoladze, I. Skhirtladze, and S. Godoladze, “Evolution of the Greater Caucasus basement and formation of the Main Caucasus Thrust, Georgia,” Tectonics 6, 1–26 (2020). https://doi.org/10.1029/2019TC005828

    Article  Google Scholar 

  129. A. Vozarova, N. Rodionov, K. Sarinova, and S. Presnyakov, “New zircon ages on the Cambrian–Ordovician volcanism of the Southern Gemericum basement (Western Carpathians, Slovakia): SHRIMP dating, geochemistry and provenance,” Int. J. Earth Sci. (Geol. Rund.) 106 (6), 2147–2170 (2017). https://doi.org/10.1007/s00531-016-1420-2

  130. O. Zlatkin, D. Avigad, and A. Gerdes, “Evolution and provenance of Neoproterozoic basement and Lower Paleozoic siliciclastic cover of the Menderes Massif (western Taurides): Coupled U–Pb–Hf zircon isotope geochemistry,” Gondwana Res. 23, 682–700 (2013). https://doi.org/10.1016/j.gr.2012.05.006

    Article  Google Scholar 

  131. O. Zlatkin, D. Avigad, and A. Gerdes, “Peri-Amazonian provenance of the Proto-Pelagonian basement (Greece), from zircon U–Pb geochronology and Lu-Hf isotopic geochemistry,” Lithos 184–187, 379–392 (2014). https://doi.org/10.1016/j.lithos.2013.11.010

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The review includes the study results carried out with our participation for more than 15 years since 2008. We are very grateful to the colleagues of the Geological Institute, Russian Academy of Sciences (Moscow, Russia), Stanford University (Department of Geology and Ecology) (Stanford, USA), the University of Florida (Gainesville, USA), and the GEMOC Center of Macquarie University (Sydney, Australia) for collaboration at all stages, including field studies, sample preparation, analytical research, and discussion of the data obtained.

We are grateful to Corresponding Member of the Russian Academy of Sciences Prof. V.N. Puchkov (Zavaritsky Institute of Geology and Geochemistry, Russian Academy of Sciences, Yekaterinburg, Russia) for reviewing the manuscript, an anonymous reviewer for valuable comments, and the editor of the “Geotectonics” for the highly professional preparation of our review.

Funding

The reported study was funded by the Russian Foundation of Basic Research, project number 19-15-50 154.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Romanyuk.

Additional information

Translated by D. Voroshchuk

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, N.B., Romanyuk, T.V. Peri-Gondwanan Blocks in the Structure of the Southern and Southeastern Framing of the East European Platform. Geotecton. 55, 439–472 (2021). https://doi.org/10.1134/S0016852121040105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852121040105

Keywords:

Navigation