Skip to main content
Log in

Source of Strong Earthquake as a Geological Object

  • Published:
Geotectonics Aims and scope

Abstract

The paper considers the results of a study of modern strong earthquakes (1991 Racha, 2006 Olyutor, 2003 Altai, and 2011–2012 Tuva) according to a single methodological plan. The need for such studies is dictated by constantly increasing requirements on the accuracy of predicting hazardous natural impacts. Analysis of the seismotectonic conditions of the locations of sources of strong earthquakes made it possible to identify geological structures and thus form an idea of the morphotectonic criteria for identifying potential sources in other regions. Modern earthquakes have continued the development of different-scale tectonic structures directly expressed in the modern relief. These activated structures form regular combinations inscribed in morphostructures of different scales. The displacements during modern earthquakes continue the development of morphostructures traced throughout the Middle Pleistocene–Holocene. The size and number of morphostructures involved in seismic activation are directly related to the magnitude of an event and reflect the specific hierarchical level of seismogenesis. In order to assess the seismic hazard, it is important that the presence or absence of pronounced active faults on the surface does not directly reflect the level of seismic hazard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.

Similar content being viewed by others

REFERENCES

  1. S. S. Arefiev, Epicentral Seismological Studies (Akademkniga, Moscow, 2003) [in Russian].

    Google Scholar 

  2. S. S. Arefiev, E. A. Rogozhin, Zh. Ya. Aptekman, V. V. Bykova, and K. Dorbat, “Deep structure and tomographic imaging of strong earthquake source zones,” Izv., Phys. Solid Earth, 42 (10), 850–863 (2006a).

    Article  Google Scholar 

  3. S. S. Arefiev, Zh. Ya. Aptekman, I. V. Bykova, I. V. Matveev, A. G. Mikhin, S. G. Molotkov, K. G. Pletnev, and V. V. Pogrebchenko,” The source and aftershocks of the Altai (Chuya) earthquake of 2003,” Izv., Phys. Soild Earth 42 (2), 167–177 (2006b).

    Article  Google Scholar 

  4. S. G. Arzhannikov, Candidate’s Dissertation in Geology and Mineralogy (Inst. Zemn. Kory Sib. Otd. Ross. Akad. Nauk, Irkutsk, 1998).

  5. D. M. Bachmanov, A. I. Kozhurin, and V. G. Trifonov, “Database of active faults of Eurasia,” Geodynam. Tectonophys. 8 (4), 711–736 (2017).

    Article  Google Scholar 

  6. T. P. Belousov, Racha Earthquake (1991) and Its Manifestation in the Relief of the Greater Caucasus (Svetoch Plyus, Moscow, 2009) [in Russian].

    Google Scholar 

  7. B. M. Bogachkin, B. A. Borisov, and E. A. Rogozhin, April 29, 1991 Racha earthquake: Results of geological investigation, Fiz. Zemli, No. 8, 12–24 (1992).

    Google Scholar 

  8. B. M. Bogachkin, A. M. Korzhenkov, E. Mamyrov, Yu. V. Nechaev, M. Omuraliev, A. E. Petrosyan, K. G. Pletnev, E. A. Rogozhin, and T. A. Charimov, “The structure of the 1992 Susamyr earthquake source based on its geological and seismological manifestations,” Izv. Phys. Solid Earth, 33 (11), 867–882 (1997).

    Google Scholar 

  9. N. A. Bogdanov, S. M. Til’man, and V. D. Chekhovich, “Late Cretaceous–Cenozoic history of the Koryak–Kamchatka region and Komandor basin of the Bering Sea,” in Geology in the Western Part of the Bering Sea (Nauka, Moscow, 1990), pp. 131–149.

    Google Scholar 

  10. K. I. Bogdanovich, I. M. Kark, B. Ya. Korol’kov, and D. I. Mushketov, The Earthquake in the Northern Branches of Tien Shan on December 22, 1910 (January 4, 1911) (Geolkom, St. Petersburg, 1914), (Tr. Geolkom. 1914. Vol. 89) [In Russian].

  11. R. N. Vakarchuk, R. E. Tatevosyan, Zh. Ya. Aptekman, and V. V. Bykova, “The 1991 Racha earthquake, Caucasus: Multiple source model with compensative type of motion,” Izv., Phys. Solid Earth, No. 5, 58–64 (2013).

    Google Scholar 

  12. A. V. Voznesenskii, “The report on the expedition to Mongolia to study earthquake foci (July 9, 23, 1905),” Izv. Post. Tsentral. Seism. Kom. II (3), 83–92 (1906).

    Google Scholar 

  13. G. A. Gamburtsev, “The technique of seismic division,” in Scientific Heritage. The Little Known Works and Archive Materials (Nauka, Moscow, 2007), pp. 148–155.

    Google Scholar 

  14. Gobi-Altai Earthquake, Ed. by N. A. Florensov and V. P. Solonenko (Izd. Akad. Nauk SSSR, Moscow, 1963) [in Russian].

    Google Scholar 

  15. S. V. Gol’din, V. Yu. Timofeev, and D. G. Ardyukov, “Fields of the Earth’s surface displacement in the Chuya earthquake zone in Gornyi Altai,” Dokl. Earth Sci. 405 (9), 1408–1413 (2005).

    Google Scholar 

  16. M. A. Goncharov, “Geodynamic cycles and geodynamic systems of various ranks: Their relationships and evolution in the Earth’s history,” Geotectonics 40 (2), 3–23 (2006).

    Article  Google Scholar 

  17. E. V. Devyatkin, Cenozoic Deposits and Neotectonics of Southeastern Altai (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  18. E. V. Deev, “Localization zones of ancient and historical earthquakes in Gorny Altai,” Izv., Phys. Solid Earth 55 (3), 451–470 (2019).

    Article  Google Scholar 

  19. A. F. Emanov, A. A. Emanov, E. V. Leskova, Yu. I. Kolesnikov, A. V. Fateev, and A. G. Filina, Chuya earthquake (Ms = 7.3, Kr = 17) on September 27, 2003 (Altai Mountains), in Earthquakes in Northern Eurasia in 2003 (GS RAN, Obninsk, 2009), pp. 326–343.

  20. A. F. Emanov, A. A. Emanov, E. V. Leskova, and A. V. Fateev, “On the change of the seismic regime in the Chuya–Kurai zone of the Altai Mountains in 1963–2016,” Interekspo Geo-Sibir’ 2 (3), 41–45 (2017).

    Google Scholar 

  21. A. F. Emanov, A. A. Emanov, A. V., Fateev, V. G. Podkorytova, N. A. Gileva, O. K. Massal’skii, “Aftershocks of the ML = 6.7 Tuva-I earthquake of December 27, 2011 and the ML = 6.8 Tuva-II February 26, 2012 (Republic of Tuva),” in Earthquakes in Northern Eurasia in 2012 (EGS RAN, Obninsk, 2018), pp. 302–312.

  22. Z. A. Kal’met’eva, A. V. Mikolaichuk, B. D. Moldobekov, A. V. Meleshko, M. M. Zhantaev, A. V. Zubovich, Atlas of Earthquakes of Kyrgyzstan (TsAIIZ, Bishkek, 2009) [in Russian].

  23. A.I. Kozhurin, Active geodynamics of northwestern segment of the Pacific tectonic belt according to the data on active faults), Doctoral Dissertation in Geology and Mineralogy (Geol. Inst. Ross. Akad. Nauk, Moscow, 2013).

  24. R. A. Kurushin and V. I. Mel’nikova, “Destruction of the Earth’s crust during the Muya earthquake in 1957 (MLH = 7.6),” Dokl. Earth Sci. 421 (2), 974–677 (2008).

    Article  Google Scholar 

  25. A. V. Lander, B. G. Bukchin, D. V. Droznin, and A. V. Kiryushin, “Tectonic setting and sedimentary parameters of the Khailin (Koryak) Earthquake on March 8, 1991: Does the Beringiya Plate Actually Exist?” Vychislit. Seismol. 26, 103–122 (1994).

    Google Scholar 

  26. A. V. Lander and T. K. Pinegina, “Paradoxes of the 2006 Olyutor earthquake focus: Deep structure and dynamics,” in Problems of the Complex Geophysical Monitoring of the Russian Far East, Ed. by V. N. Chebrov (KF GS RAN, Petropavlovsk-Kamchatskii, 2010), pp. 131–135.

    Google Scholar 

  27. A. V. Lander, V. I. Levina, and E. I. Ivanova, “The earthquake history of the Koryak Upland and the aftershock process of the M w 7.6 April 20(21), 2006 Olyutorskii earthquake,” J. Volcanol. Seismol., No. 2, 87–100 (2010).

  28. V. E. Levin, V. F. Bakhtiarov, V. M. Pavlov, N. N. Titkov, and S. S. Serovetnikov, “Geodynamic studies of the April 20(21), 2006 Olyutorskii earthquake based on observations by the Kamchatka GPS network,” J. Volcanol. Seismol., No. 3, 50–59 (2010).

  29. V. I. Levina, A. V. Lander, E. I. Ivanova, S. V. Mityushkina, and N. N. Titkov, “The Olyutor earthquake (Mw = 7.6, Io = 9–10) on April 20, 2006 (Koryak Highland),” in Earthquakes in North Eurasia, 2006 (GS RAN, Obninsk, 2012), pp. 314–329.

  30. E. V. Leskova and A. A. Emanov, “Hierarchic properties of the tectonic stress field in the source region of the 2003 Chuya earthquake,” Russ. Geol. Geophys. 54 (1), 87–95 (2013).

    Article  Google Scholar 

  31. A. I. Lutikov, G. Yu. Dontsova, and S. L. Yunga, “Seismologic analyses of the Altai earthquake in 2003,” in Strong Earthquake in Altai on September 27, 2004: Materials of Preliminary Study (Inst. Fiz. Zemli Ross. Akad. Nauk, Moscow, 2004), pp. 38–49.

  32. B. T. Mazurov, “Deformation fields in the Altai Mountains before the Chuya earthquake,” Geodez. Kartogr., No. 3, 48–50 (2007a).

  33. B. T. Mazurov, “Digital visualization of the fields of postseismic displacements and deformations,” Geodez. Kartogr. No. 4, 51–53 (2007b).

    Google Scholar 

  34. V. K. Milyukov, A. P. Mironov, A. N. Ovsyuchenko, E. A. Rogozhin, A. V. Gorbatikov, V. N. Drobyshev, Kh. M. Khubaev, and A. V. Nikolaev, “Velocities of modern horisontal movements in the central segment of the Greater Caucasus based on GPS data and their relations to tectonics and the deep structure of the Earth’s crust,” Dokl. Earth Sci. 481 (3), 291–295 (2018).

  35. V. O. Mikhailov, A. N. Nazaryan, V. B. Smirnov, M. Diaman, N. M. Shapiro, E. A. Kiseleva, S. A. Tikhotskii, S. A. Polyakov, E. I. Smol’yaninova, and E. P. Timoshkina, “Joint inversion of the differential satellite interferometry and GPS data: A case study of Altai (Chuia) earthquake of September 27, 2003,” Izv., Phys. Soild Earth, No. 2, 91–103 (2010).

    Google Scholar 

  36. V. O. Mikhailov, E. A. Kiseleva, K. Arora, E. P. Timoshkina, V. B. Smirnov, R. Chadda, A. V. Ponomarev, and D. Shrinagesh, “New data on the Olyutorskii earthquake acquired via SAR interferometry,” J. Volkanol. Seismol., No. 3, 64–69 (2018).

  37. P. Molnar, R. A. Kurushin, V. M. Kochetkov, M. G. Dem’yanovich, B. A. Borisov, Yu. Ya. Vashchilov, “Deformation and faulting at strong earthquakes in the Mongol–Siberian region,” in Deep Structure and Geodynamics of the Mongol–Siberian Region (Nauka, Novosibirsk, 1995), pp. 5–55.

    Google Scholar 

  38. Yu. F. Moroz, T. A. Moroz, V. A. Loginov, A. G. Nurmukhamedov, and D. A. Alekseev, “The changes in the electric conductivity of the lithosphere in the source region of the strongest Olyutor earthquake in the Koryak highlands,” Izv., Phys. Solid Earth, No. 1, 31–46 (2016).

    Google Scholar 

  39. I. V. Mushketov, “The earthquake on May 28, 1887 in the town of Verny,” Izv. Russ. Geogr. Ob-va 24 (2), 65–90 (1888).

    Google Scholar 

  40. A. A. Nikonov, “Khait catastrophe: 60 years later,” Priroda, No. 11, 38–50 (2009).

    Google Scholar 

  41. I. S. Novikov, Morphotectonics of Altai (GEO, Novosibirsk, 2004) [in Russian].

    Google Scholar 

  42. A. N. Ovsyuchenko, A. V. Marakhanov, A. S. Lar’kov, and S. S. Novikov, “Late Quaternary dislocations and seismotectonics of the Racha earthquake source, the Greater Caucasus,” Geotectonics 48 (6), 440–458 (2014).

    Article  Google Scholar 

  43. A. N. Ovsyuchenko, E. A. Rogozhin, A. V. Marakhanov, A. S. Lar’kov, S. S. Novikov, K. S. Kuzhuget, and Yu. V. Butanaev, “Geological studies of Tuva earthquakes, 2011–2012,” Vopr. Inzh. Seismol. 43 (1), 5–29 (2016).

    Google Scholar 

  44. A. N. Ovsyuchenko, Yu. V. Butanaev, A. V. Marakhanov, A. S. Lar’kov, S. S. Novikov, and K. S. Kuzhuget, “Recurrence of strong seismic events in the area of the 2011–2012 Tuva earthquakes according to paleoseismological data,” Russ. Geol. Geophys. 58 (11), 1417–1425 (2017).

    Article  Google Scholar 

  45. T. K. Pinegina, “Seismic deformations in the epicenter of the Olyutor earthquake,” in Olyutor Earthquake (April 20(21), 2006, Koryak Highland). First Research Results (GS RAN, Petropavlovsk-Kamchatskii, 2007), pp. 126–169.

  46. T. K. Pinegina and A. I. Kozhurin, “New data on a seismic rupture during the Olyutor earthquake (Mw = 7.6, April 10,2006, Koryak Region, Russia),” Vestn. KRAUNTs. Ser. Nauki Zemle, No. 2, 44–54 (2010).

    Google Scholar 

  47. V. S. Ponomarev, “Energy Saturation of Geologic Medium,” in Transactions of Geological Institute of Russian Academy of Sciences. Vol. 582 (Nauka, Moscow, 2008).

    Google Scholar 

  48. M. T. Prilepin, S. Balasanyan, S. M. Baranova, T. V. Guseva, A. V. Mishin, M. Nadariya, E. A. Rogozhin, N. K. Rozenberg, Yu. P. Skovorodkin, M. Khamburger, R. King, and R. Reilinger, “Studying the kinematics of the Caucasus region using GPS technology,” Fiz. Zemli, No. 6, 68–75 (1997).

    Google Scholar 

  49. E. A. Rogozhin, Essays on Regional Seismotectonics (Ob”ed. Inst. Fiz. Zemli Ross. Akad. Nauk, Moscow, 2012) [in Russian].

  50. E. A. Rogozhin, S. S. Arefiev, B. M. Bogachkin, A. Sisternas, and E. Filip, “Integrated analysis of geological and seismological data and the seismotectonic position of the Racha earthquake,” Fiz. Zemli, No. 3, 70–77 (1993).

    Google Scholar 

  51. E. A. Rogozhin and S. G. Platonova, Source zones of strong earthquakes of mountainous Altai in the Holocene (Inst. Fiz. Zemli Ross. Akad. Nauk, Moscow, 2002) [in Russian].

    Google Scholar 

  52. E. A. Rogozhin, A. N. Ovsyuchenko, A. V. Marakhanov, and E. A. Ushanova, “Tectonic setting and geological manifestations of the 2003 Altai earthquake,” Geotectonics, 41 (2), 87–104 (2007).

  53. E. A. Rogozhin, A. N. Ovsyuchenko, A. V. Marakhanov, and T. K. Pinegina, “Olyutor earthquake in Koryak Region on April 20(21), 2006: Results of geological and macroseismic study of the epicentral area,” in Olyutor Earthquake on April (20 (21) 2006, Koryak Highland). First Research Results (GS Ross. Akad. Nauk, Petropavlovsk-Kamchatskii, 2007), pp. 170–206.

  54. E. A. Rogozhin, A. N. Ovsyuchenko, and A. V. Marakhanov, “Strong earthquakes in the south of the Altai Mountains in Holocene,” Fiz. Zemli, No. 6, 31–51 (2008).

    Google Scholar 

  55. E. A. Rogozhin, A. N. Ovsyuchenko, A. V. Marakhanov, and S. S. Novikov, “Tectonic position and geological manifestations of the 2006 Olyutor earthquake in Koryak Region,” Geotectonics, No. 6, 3–23 (2009).

  56. E. A. Rogozhin, S. S. Novikov, and S. N. Rodina, “Paleoearthquakes and long-term seismic regime of the Koryak Highland,” Geofiz. Issled. 11 (4), 35–43 (2010).

    Google Scholar 

  57. SKZ OSR-2012. Specialized Catalog of Earthquakes of Northern Eurasia for General Seismic Division of the Russian Federation, Ed. by V. I. Ulomov (IGIIS, Moscow, 2012) [in Russian].

    Google Scholar 

  58. V. N. Smirnov, “Northeastern Eurasia,” in Neotectonics, Geodynamics, and Seismicity of Northern Eurasia, Ed. by A. F. Grachev (Ob”ed. Inst. Fiz. Zemli Ross. Akad. Nauk, Moscow, 2000), pp. 120–133.

  59. V. P. Solonenko, “Determination of earthquake source zones based on geological signs,” Izv. Akad. Nauk SSSR. Ser. Geol., No. 11, 58–74 (1962).

  60. V. P. Solonenko, “Active tectonics in the pleistoseist zone of the Muya earthquake,” Izv. AN SSSR. Ser. Geol., No. 4, 58–70 (1965).

  61. V. Yu. Timofeev, D. G. Apdyukov, E. Calais, A. D. Duchkov, E. A. Zapreeva, S. A. Kazantsev, F. Roosbeek, and C. Bruyninx, “Displacement fields and models of current motion in Gorny Altai,” Russ. Geol. Geophys. 47 (8), 923–937 (2006).

    Google Scholar 

  62. V. G. Trifonov, “30 years of the geological studies with using space means: Tendencies, achievements, and perspectives,” Issled. Zemli Kosmosa, No. 1, 27–39 (2010).

    Google Scholar 

  63. V. G. Trifonov, “Cyclicity of the Late Holocene seismicity in the Alpine-Himalayan Belt,” Geotectonics, No. 6, 3–17 (2013).

    Google Scholar 

  64. N. A. Florensov, “On the neotectonics and seismicity of the Mongolian–Baikal mountainous region,” Geol. Geofiz., No. 1, 74–90 (1960).

  65. N. A. Florensov, Essays on Structural Geomorphology (Nauka, Moscow, 1978) [in Russain].

    Google Scholar 

  66. S. D. Khil’ko, R. A. Kurushin, V. M. Kochetkov, L. A. Misharina, V. I. Mel’nikova, N. A. Gileva, S. V. Lastochkin, I. Balzhinnnyam, and D. Monkhoo, Earthquakes and the Basis of Seismic Division of Mongolia, Ed. by V. P. Solonenko and N. A. Florensov (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  67. D. V. Chebrov, Yu. A. Kugaenko, A. V. Lander, I. R. Abubakirov, A. A. Gusev, S. Ya. Droznina, S. V. Mityushkina, D. A. Ototyuk, V. M. Pavlov, and N. N. Titkov, “Near Island Aleutian earthquake of July 17, 2017 with Mw = 7.8. I. Extended rupture along the Commander block of the Aleutian island arc from observations in Kamchatka,” Fiz. Zemli, No. 4, 48–71 (2019).

    Google Scholar 

  68. A. V. Chipizubov, “Clustering of one-act and coeval paleoseismodislocations and determination of paleoearthquake magnituted based on their scales,” Geol. Geofiz., No. 3, 386–398 (1998).

  69. N. V. Shebalin, Foci of Strong Earthquakes in USSR (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  70. B. T. Aagaard, J. L. Blair, J. Boatwright, S. H. Garcia, R. A. Harris, A. J. Michael, D. P. Schwartz, J. S. DiLeo, “Earthquake Outlook for the San Francisco Bay Region 2014-2043 (Ver. 1.1, August 2016),” U.S. Geol. Surv. Fact Sheet, 2016–3020 (2016).

  71. A. Agatova and R. Nepop, “Dating strong Prehistoric earthquakes and estimating their recurrence interval applying radiocarbon analysis and dendroseismological approach—Case study from SE Altai (Russia),” Int. J. Geohazard. Environ., No. 3, 131–149 (2016).

  72. S. Barbot, Y. Hamiel, and Y. Fialko, “Space geodetic investigation of the coseismic and postseismic deformation due to the 2003 Mw = 7.2 Altai Earthquake: Implications for the local lithospheric rheology,” J. Geophys. Res. 113, B03403 (2008).

    Google Scholar 

  73. D. W. Burbank and R. S. Anderson, Tectonic Geomorphology (Blackwell Publ., Oxford, 2001).

    Google Scholar 

  74. M. M. Clark, A. Gianz, and M. Rubin, “Holocene activity of the Coyote Creek fault as recorded in sediments of Lake Cahuilla,” in The Borrego Mountain Earthquake of April 9, 1968, (USGS Prof. Pap. no. 787. 1972), pp. 112–130.

  75. S. B. DeLong, J. J. Lienkaemper, A. J. Pickering, and N. N. Avdievitch, “Rates and patterns of surface deformation from laser scanning following the South Napa Earthquake, California,” Geosphere 11 (6), 2015–2030 (2015).

    Article  Google Scholar 

  76. J. M. Fletcher, O. J. Teran, T. K. Rockwell, et al., “Assembly of a large earthquake from a complex fault system: Surface rupture kinematics of the 4 April 2010 El Mayor-Cucapah (Mexico) M w 7.2 Earthquake,” Geosphere 10 (4), 797–827 (2014).

    Article  Google Scholar 

  77. G. K. Gilbert, “The earthquake as natural phenomena,” in The San Francisco Earthquake and Fire of April 18, 1906, and Their Effects on Structures and Structural Materials (USGS. Bull. 1907. Vol. 324), pp. 1–13.

  78. I. J. Hamling, S. Hreinsdóttir, K. Clark, et al., “Complex multifault rupture during the 2016 M w 7.8 Kaikoura Earthquake, New Zealand,” Science 356 (6334), eaam7194 (2017).

  79. A. W. Hatheway and F. B. Leighton, Trenching as an exploratory method, in Geology in the Sitting of Nuclear Power Plants. GSA Rev. Engineer. Geol. 1979. Vol. IV, pp. 169–196.

    Google Scholar 

  80. B. Koto, “On the causes of the Great Earthquakes in Central Japan, 1891,” J. Imper. Univ. Japan, No. 5, 296–353 (1893).

  81. Paleoseismology, Ed. by J. P. McCalpin (Acad. Press, San Diego, 2009).

    Google Scholar 

  82. E. Nissen, B. Emmerson, G. J. Funning, A. Mistrukov, B. Parsons, D. P. Robinson, E. Rogozhin, T. J. Wright, “Combining InSAR and seismology to study the 2003 Siberian Altai Earthquakes — Dextral strike-slip and anticlockwise rotations in the Northern India–Eurasia Collision Zone,” Geophys. J. Int. 169, 216–232 (2007).

    Article  Google Scholar 

  83. R. D. Oldham, “Report on the Great Earthquake of 12 June, 1897,” Mem. Geol. Soc. India 29, 379 (1899).

    Google Scholar 

  84. N. A. Radziminovich, G. Bayar, A. I. Miroshnichenko, S. Demberel, M. Ulziibat, D. Ganzorig, and A. V. Lukhnev, “Focal mechanisms of earthquakes and stress field of the crust in Mongolia and its surroundings,” Geodynam. Tectonophys 7 (1), 23–38 (2016).

    Article  Google Scholar 

  85. H. F. Reid, The mechanism of the earthquake, in The California Earthquake of April 18, 1906, Rep. State Earthquake Investigat. Com. (Carnegie Inst., Washington, 1910. Vol. 2).

  86. N. Saint Fleur, N. Feuillet, R. Grandin, E. Jacques, J. Weil-Accardo, and Y. Klinger, “Seismotectonics of Southern Haiti: A new faulting model for the 12 January 2010 M = 7.0 earthquake,” Geophys. Rev. Lett. 42, 10273–10281 (2015).

    Article  Google Scholar 

  87. L. Salditch, S. Stein, J. Neely, B. Spencer, E. M. Brooks, A. Agnon, and M. Liu, “Earthquake supercycles and long-term fault memory,” Tectonophysics 774, 228289 (2020).

    Article  Google Scholar 

  88. K. E. Sieh, “Prehistoric large earthquakes produced by slip on the San Andreas Fault at Pallet Creek, California,” J. Geophys. Res., No. 83, 3907–3939 (1978).

  89. A. G. Sylvester, “Strike-slip faults,” Geol. Soc. Am. Bull. 100, 1666–1703 (1988).

    Article  Google Scholar 

  90. L. R. Sykes, “Intraplate seismicity, reactivation of preexisting zones of weakness, alkaline magmatism, and other tectonism postdating continental fragmentation,” Rev. Geophys. Space Phys. 16 (4), 621–688 (1978).

    Article  Google Scholar 

  91. R. S. Tarr and L. Martin, “Earthquakes at Jakutat Bay, Alaska in September, 1899,” in U.S. Geol. Surv. Prof. Pap. Vol. 69 (Govern. Print. Office, Washington, 1912).

  92. K. K. S. Thingbaijam, P. Martin Mai, and K. Goda, “New empirical earthquake source-scaling laws,” Bull. Seism. Soc. Am. 107 (5), 2225–2246 (2017).

    Article  Google Scholar 

  93. D. L. Wells and K. J. Coppersmith, “New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement,” Bull. Seism. Soc. Am. 84 (4), 974–1002 (1994).

    Google Scholar 

  94. www.ceme.gsras.ru. Accessed date June 26, 2020.

Download references

ACKNOWLEDGMENTS

The authors express their sincere gratitude to the reviewers for useful comments that allowed them to improve the manuscript, as well as the editor for thorough editing of the article.

Funding

The study was carried out with the financial support of the Russian Foundation for Basic Research (project no. 19-15-50 263) and the state task of Shmidt Institute of Physics of the Earth of Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Rogozhin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogozhin, E.A., Ovsychenko, A.N. & Larkov, A.S. Source of Strong Earthquake as a Geological Object. Geotecton. 55, 307–333 (2021). https://doi.org/10.1134/S0016852121030079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852121030079

Keywords:

Navigation