Skip to main content
Log in

Seismic Imaging of Collapsed-Anticline Diapirs in Central Tunisia

  • Published:
Geotectonics Aims and scope

Abstract

Central Tunisia is characterized by major fault systems, being ornamented by salt diapirs of the Late Triassic evaporite-rich interval. Salt movement began in the Late Triassic and continues to the present-day. Lasting halokinesis create pillows, diapirs, salt wall and salt-cored folds, sometimes, with collapse graben above. Salt diapir structures have been mapped and many regions collapsed diapirs are, perhaps, associated to salt removal. These structures were eroded resulting exposure and sub-aerial erosion by the Late Cretaceous to Paleogene uplift and post-Middle Miocene. The initial studies and findings related to salt structures in Tunisia suggesting a clear correlation between diapiric uplift and local tectonic structures. In particular, the N‒S and NW‒SE shortening trends during the Neogene and Quaternary folding strongly controlled the development of rows of diapirs and salt walls. The salt activities are controlled by tectonics as well as differential loading in the Triassic sediments over long distances, displaying that the mobilization of Triassic sediments covered the whole region and not just the zones near the single diapiric structures. Here we will focus also in the salt related plays and the associated petroleum systems with particular emphasis on trap types, reservoir and hydrocarbon migration pathways. Obviously, all these elements are linked together to certain degree and controlled by the salt tectonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. C. Abbès, Doctorat d’Etat (Tunis, Tunisia, 2004).

    Google Scholar 

  2. A. O. Beall, M. K. Croes, and D. G. Woolverton, “Jurassic facies distribution and reservoir/source potential, onshore Central Tunisia ‒ with special reference to the Sidi Aich block,” in Proceedings of the 8th Tunisian Petroleum Exploration and Production Conference, Vol. 352, No. 19 of ETAP Mem. (2002), pp. 35‒52.

  3. M. Bédir, Thèse de doctorat (Tunis, Tunisia, 1995).

  4. M. Bédir, N. Boukadi, S. Tlig, F. Ben Timzal, L. Zitouni, R. Alouani, F. Slimane, C. Bobier, and F. Zargouni, “Subsurface Mesozoic basins in the Central Atlas of Tunisia: Tectonics, sequence deposit distribution and hydrocarbon potential,” AAPG Bull. 85, 885–907 (2001).

    Google Scholar 

  5. A. Ben Ferjani, P. F. Burollet, and F. Mejri, Vol. 1 of Entreprise Tunisienne d’Activités Pétrolières, Mem. (Tunis, Tunisia, 1990).

  6. S. Bouaziz, E. Barrier, M. Soussi, M. Turki, and H. Zouari, “Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record,” Tectonophysics 357, 227–253 (2002).

    Article  Google Scholar 

  7. N. Boukadi, Doctorat d’Etat (Tunis, Tunisia, 1994).

    Google Scholar 

  8. R. Bracène and D. Frizon de Lamotte, “The origin of intraplate deformation in the system of western and central Algeria: From Jurassic rifting to Cenozoic-Quaternary inversion,” Tectonophysics 357, 207–226 (2002).

    Article  Google Scholar 

  9. P. F. Burollet, “Contribution à l’étude stratigraphique de la Tunisie centrale,” Ann. Mines Geol. (Tunis.) 18, 350 (1956).

  10. F. Cater, Geology of the Salt Anticline Region in Southwestern Colorado, Vol. 637 of U.S. Geol. Surv. Prof. Pap. (1970).

  11. J. Dercourt, L. P. Zonenshain, L. E. Ricou, V. G. Kazmin, X. Le Pichon, A. L. Knipper, C. Grandjacquet, I. M. Sborshchikov, J. Buillin, O. Sorokhtin, J. Geyssant, M. Lepvrier, B. Biju Duval, J. C. Sibuet, J. C. Savostin, et al., “Présentation de neuf cartes paléogéographiques au 1 / 20.000.000 s’étendant de l’Atlantique au Pamir pour la période du Lias à l’Actuel,” Bull. Soc. Geol. Fr. 8, 637‒652 (1985).

    Article  Google Scholar 

  12. F. A. Diegel, J. F. Karlo, D. C. Schuster, R. C. Shoup, and P. R. Tauvers, “Cenozoic structural evolution and tectono-stratigraphic framework of the northern gulf coast continental margin,” in Salt Tectonics: A Global Perspective, Vol. 65 of AAPG Mem., Ed. by M. P. A. Jackson, D. G. Roberts, and S. Snelson (Tulsa, Okla., 1995), pp. 109–151.

  13. M. Ghanmi, M. Ben Youssef, M. Jouirou, F. Zargouni, and J. M. Vila, “Halocinèse crétacée au Jebel Kebbouch (Nord-Ouest tunisien): Mise en place à fleur d’eau et évolution d’un ‘glacier de sel’ albien, comparaisons,”  Eclogae Geol. Helv. 94, 153–160 (2001).

    Google Scholar 

  14. M. Harzalli, H. Troudi, K. Boubaker, and J. Ouali, “Carbonate platform-margins and reefs distribution using 2D seismic analysis, Central Tunisia,” J. Afr. Earth Sci. 100, 109–120 (2014).

    Article  Google Scholar 

  15. M. Harzali, H. Troudi, H. Godet, and J. Ouali, “Seismic stratigraphy and hydrocarbon prospectivity of the Aptian–Albian succession along the Oued Bahloul Basin, Central Ouest Tunisia,” J. Iberian Geol. 45, 383–399 (2019).

    Article  Google Scholar 

  16. A. Hlaiem, “Halokinisis and structural evolution of the major features in eastern and southern Tunisian Atlas,” Tectonophysics 306, 79–95 (1999).

    Article  Google Scholar 

  17. M. R. Hudec and M. P. A. Jackson, “Regional restoration across the Kwanza Basin, Angola: Salt tectonics triggered by repeated uplift of a metastable passive margin,” AAPG Bull. 88, 971–990 (2004).

    Article  Google Scholar 

  18. M. R. Hudec and M. P. A. Jackson, “Advance of allochthonous salt sheets in passive margins and orogens,” AAPG Bull. 90, 1535–1564 (2006).

    Article  Google Scholar 

  19. M. P. Jackson and C. Vendeville, “Regional extension as a geologic trigger for diapirism,” Geol. Soc. Am. Bull. 106, 57–73 (1994).

    Article  Google Scholar 

  20. C. Jallouli, M. Chikhaoui, A. Braham, M. M. Turki, K. Mickus, and R. Benassi, “Evidence for Triassic salt domes in the Tunisian Atlas from gravity and geological data,” Tectonophysics 396, 209– 225 (2005).

    Google Scholar 

  21. F. Kamoun, R. Martint, B. Peybernes, and L. Zaninetti, “Caractérisation micropaléontologique du ‘Rhétien’ dans l’Axe Nord-Sud (Tunisie centrale); comparaison avec le Rhétien de la Dorsale et de la Plate-forme saharienne,” Riv. Ital. Paleontol. Stratigr. 100, 365‒382 (1994).

    Google Scholar 

  22. M. Laribi, H. Boubaker, B. J.-J. Beck, H.-K. Chen, K. Amiri-Garroussi, and S. Rassas, “Integrated fractured-reservoir characterization and simulation: Application to Sidi El Kilani Field, Tunisia,” SPE Annual Technical Conference and Exhibition, Denver, Colo.,2003, Pap. No. 84455.

  23. C. Martinez, M. Chikhaoui, R. Truillet, J. Ouali, and R. B. Creuzot, “Le contexte géodynamique de la distension albo-aptienne en Tunisie septentrionale et centrale: Structuration éocrétacée de l’Atlas tunisien,” Eclogae Geol. Helv. 84, 61‒82 (1991).

    Google Scholar 

  24. A. Masrouhi and H. Koyi, “Submarine ‘salt glacier’ kinematics of Northern Tunisia, a case of Triassic salt mobility in North African Cretaceous passive margin,” in Salt Tectonics, Sediments and Prospectivity, Vol. 363 of Geol. Soc. London, Spec. Publ., Ed. by S. G. Archer, G. I. Alsop, A. Hartley, N. T. Grant, and R. Hodgkinson (London, 2012), pp. 579–593.

  25. D. Mehdi, S. Cirilli, N. Buratti, F. Kamoun, and A. Trigui, “Palynological characterization of the Lower Carnian of the KEA5 borehole (Koudiat El Halfa Dome; Central Atlas, Tunisia),” Geobios 42, 63‒71 (2009).

    Google Scholar 

  26. M. Mohr, P. A. Kukla, J. L. Urai, and G. Bresser, “Multiphase salt tectonic evolution in NW Germany: Seismic interpretation and retro-deformation,” Int. J. Earth Sci. 94, 917–940 (2005).

    Google Scholar 

  27. J. Ouali, Thèse ès Sciences (Tunis, Tunisia, 2007).

  28. V. Perthuisot, PhD Thesis (Paris, 1978).

  29. V. Perthuisot, “Diapirism in northern Tunisia,” J. Struct. Geol. 3, 231–235 (1981).

    Article  Google Scholar 

  30. A. Piqué, L. Aït Brahim, M. El Azzouzi, R. Maury, H. Bellon, B. Semroud, and E. Laville, “Le poinçon maghrébin: contraintes structurales et géochimiques,” C. R. Acad. Sci. 326, 575–581 (1998).

    Google Scholar 

  31. M. Rabhi, PhD Thesis (Tunis, Tunisia, 1999).

  32. T. Randles, S. Clarke, and P. Richards, “Development of crestal collapse structures above dissolving salt anticlines,” Application to Seismic Interpretation within Salt-Controlled Basins: AAPG Annual Convention and Exhibition, Long Beach, Calif.,2012.

  33. H. Troudi, H. El Euchi, and P. Tremoliere, “Fracture origin, morphology and reservoir performance: Example of the Maastrichtian chalky limestones in Tunisia,” EAGE 63rd Conference, Amsterdam,2001, Pap. No. 607.

  34. H. Troudi, M. H. Acheche, and M. Saidi, “Mid-Cretaceous platform carbonate play in Tunisia, North Africa: Attributes evidence from producing,” AAPG Conference, Houston, Tex.,2002, Pap. No. 90007.

  35. H. Troudi, A. M’rabet, M. Acheche, H. Ghariani, and N. Ghariani, “Diagenetic (lithification & dolomitisation) and tectonic (fracturing) controls on the Senonian Abiod carbonate reservoir in Tunisia, North Africa,” AAPG Conference, New Orleans, La.,2000, p. 149.

  36. H. Toudi, D. Kebaier, M. Acheche, and Y. Haddar, “Ghadames Basin, southern Tunisia: Appraisal of Paleozoic petroleum systems and future prospectivity,” AAPG Annual Meeting, Salt Lake City, Utah,2003, Pap. No. 90013.

  37. H. Troudi, G. Tari, G. Cantarella, and W. Alouani, “Styles of salt tectonics in Central Tunisia: An overview,” in Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins (Elsevier, New York, 2017), ch. 25, p. 543‒561.

    Google Scholar 

  38. B. C. Vendeville and M. P. A. Jackson, “The fall of diapirs during thin-skinned extension,” Mar. Petrol. Geol. 9, 354‒371 (1992).

    Article  Google Scholar 

  39. J.-M. Vila, M. Ben Youssef, M. Chikhaoui, and M. Ghanmi, “Un grand “glacier de sel” sous marin albien du Nord-Ouest tunisien (250 km2?): le matériel salifère triasique du ‘diapir’ de Ben Gasseur et de l’anticlinal d’El Kef,” C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes 322, 221–227 (1996).

    Google Scholar 

  40. T. Zouaghi, M. Bedir, H. Abdallah, and M. Inoubli, “Seismic sequence stratigraphy, basin structuring, and hydrocarbon implications of Cretaceous deposits (Albian–Maastrichtian) in central Tunisia,” Cretaceous Res. 30, 1–21 (2008).

    Google Scholar 

  41. T. Zouaghi, I. Ferhi, M. Bédir, M. Ben Youssef, M. Gasmi, and M. H. Inoubli, “Analysis of Cretaceous (Aptian) strata in Central Tunisia, using 2D seismic data and well logs,” J. Afr. Earth Sci. 61, 38–61 (2011).

    Google Scholar 

  42. T. Zouaghi, M. Bédir, A. Ayed-Khaled, M. Lazzez, M. Soua, A. Amri, and M. H. Inoubli, “Autochthonous versus allochthonous Upper Triassic evaporites in the Sbiba graben, Central Tunisia,” J. Struct. Geol. 52, 163‒182 (2013).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Tunisian National Oil Company (ETAP) for supplying the data for this study. The authors also thank the editors, reviewer Prof. E.A. Rogozhin (Shmidt Institute of Physics of the Earth of Russian Academy of Sciences, Moscow, Russia) and anonymous reviewer, and colleagues from ETAP exploration department for their careful reading and useful comments that improved the revised manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Harzali.

Additional information

Reviewer: E.A. Rogozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harzali, M., Troudi, H. & Ouali, J. Seismic Imaging of Collapsed-Anticline Diapirs in Central Tunisia. Geotecton. 54, 577–588 (2020). https://doi.org/10.1134/S0016852120040032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852120040032

Keywords:

Navigation