Skip to main content
Log in

Structural Characteristics, Paleoseismology and Slip Rate of the Qoshadagh Fault, Northwest of Iran

  • Published:
Geotectonics Aims and scope

Abstract

Geometric and seismic parameters of the Qoshadagh Fault (QDF) were investigated to evaluate seismic hazard along this fault, which consists of three segments. The central E–W striking, dextral-reverse segment is the longest and terminates at both ends into NW–SE striking splay arrays. Both eastern and western splay arrays form locally transtensional bends. Paleoseismic data obtained from three excavated trenches across the fault combined with dated offset geomorphic features revealed that the central segment experienced at least 5 surface rupturing earthquakes during the past 2.5 ka, with maximum moment magnitude of Mw = 6.8 ± 0.2. The mean recurrence interval for the identified paleoearthquakes is 452 ± 143 years (±2σ) and the calculated amount of slip per event is ca. ≈0.85 m. These results imply that the QDF slips at an average rate of 1.9 ± 0.1 mm yr–1 for over the past 2.5 ka. The obtained values define the seismic behavior of the fault and are essential to remediate ensuing seismic risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. K. Aki and P. G. Richards, Quantitative Seismology: Theory and Methods (Freeman, San Francisco, 1980), 2 Vols.

    Google Scholar 

  2. P. Agard, J. Omrani, L. Jolivet, H. Whitechurch, B. Vrielynck, W. Spakman, P. Monie, B. Meyer, and R. Wortel, “Zagros orogeny: A subduction-dominated process,” Geol. Mag. 148, 692–725 (2011). https://doi.org/10.1017/S001675681100046X

    Article  Google Scholar 

  3. M. Alavi, “Structures of the Zagros Fold-Thrust Belt in Iran,” Am. J. Sci. 307, 1064–1095 (2007). https://doi.org/10.2475/09.200702

    Article  Google Scholar 

  4. M. B. Allen, J. Jackson, and R. Walker, “Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates,” Tectonics 23 (2004). https://doi.org/10.1029/2003TC001530

  5. M. B. Allen, M. Kheirkhah, I. Neill, M. H. Emami, and C. L. Mcleod, “Generation of arc and within-plate chemical signatures in collision zone magmatism: Quaternary lavas from Kurdistan province, Iran,” J. Petrol. 54, 887–911 (2013). https://doi.org/10.1093/petrology/egs090

    Article  Google Scholar 

  6. R. W. Allmendinger, FaultKinWin, a program for analyzing fault slip data for Windows computers. http:// www.geo.cornell.edu/geology/faculty/RWA/programs/ faultkin.html. Accessed January 31, 2019.

  7. C. Bronk Ramsey, “Methods for summarizing radiocarbon datasets,” Radiocarbon 59, 1809–1833 (2017). https://doi.org/10.1017/RDC.2017.108

    Article  Google Scholar 

  8. A. Copley, M. Faridi, M. Ghorashi, J. Hollingsworth, J. Jackson, H. Nazari, B. Oveisi, and M. Talebian, “The 2012 August 11 Ahar earthquakes: Consequences for tectonics and earthquake hazard in the Turkish– Iranian Plateau,” Geophys. J. Int. 196, 15–21 (2013). https://doi.org/10.1093/gji/ggt379

    Article  Google Scholar 

  9. J. F. Dewey, W. C. Pitman, W. B. F. Ryan, and J. Bonnin, “Plate tectonics and the evolution of the Alpine system,” Geol. Soc. Am. Bull. 84, 3137–3180 (1973).

    Article  Google Scholar 

  10. M. Faridi, J. P. Burg, H. Nazari, M. Talebian, and M. Ghorashi, “Active fault pattern and interplay in Azerbaijan Region (NW Iran),” Geotectonics 51, 428–437 (2017).

    Article  Google Scholar 

  11. M. Faridi and A. Sartibi, Preliminary Report on 11 August 2012 Varzegan-Ahar Earthquake: Internal Report with Surface Rupture Map and Intensity Map Attachments (Geol. Surv. Iran, NW Reg. Off., 2012).

  12. M. Faridi, Structural Geology of Mount Sabalan: Internal Report (Iran. Org. Renewable Energy, 2010).

  13. M. Faridi and E. Haghfarshi, Geological Map of Khoja, Sheet No. 5366, Scale 1 : 100 000 (Geol. Surv. Iran, 2006).

  14. J. Ghalamghash, S. Z. Mousavi, J. Hassanzadeh, and A. K. Schmitt, “Geology, zircon geochronology, and petrogenesis of Sabalan volcano (northwestern Iran),” J. Volcanol. Geotherm. Res. 327, 192–207 (2016). https://doi.org/10.1016/j.jvolgeores.2016.05.001

    Article  Google Scholar 

  15. A. Ghods, E. Shabanian, E. Bergman, M. Faridi, S. Donner, G. Mortezanejad, and A. Aziz-Zanjani, “The Varzaghan–Ahar, Iran, Earthquake Doublet (Mw 6.4, 6.2): Implications for the geodynamics of northwest Iran,” Geophys. J. Int. 203, 522–540 (2015). https://doi.org/10.1093/gji/ggv306

    Article  Google Scholar 

  16. T. C. Hanks and H. Kanamori, “A moment magnitude scale,” J. Geophys. Res., B 84, 2348–2350 (1979). https://doi.org/10.1029/JB084iB05p02348

  17. S. McClusky, S. Balassanian, A. Barka, C. Demir, S. Ergintav, I. Georgiev, O. Gurkan, M. Hamburger, K. Hurst, H. Kahle, K. Kastens, G. Kekelidze, R. King, V. Kotzev, O. Lenk, et al., “Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus,” J. Geophys. Res.: Solid Earth 105, 5695–5719 (2002). https://doi.org/10.1029/1999JB900351

    Article  Google Scholar 

  18. F. Mesbahi, M. Mohajjel, and M. Faridi, “Neogene oblique convergence and strain partitioning along the North Tabriz Fault, NW Iran,” J. Asian Earth Sci. 129, 191–205 (2016). https://doi.org/10.1016/j.jseaes.2016.08.010

    Article  Google Scholar 

  19. P. J. Reimer, M. G. Baillie, E. Bard, A. Bayliss, J. W. Beck, P. G. Blackwell, C. Bronk Ramsey, C. E. Buck, G. S. Burr, R. L. Edwards, M. Friedrich, P. M. Grootes, T. P. Guilderson, I. Hajdas, T. J. Heaton, et al., “IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP,” Radiocarbon 51, 1111‒1150 (2009).

    Article  Google Scholar 

  20. L.-E. Ricou, “Tethys reconstructed: Plates, continental fragments and their boundaries since 260 Ma from Central America to South-eastern Asia,” Geodin. Acta 7, 169–218 (1994). https://doi.org/10.1080/09853111.1994.11105266

    Article  Google Scholar 

  21. M. Rizza, P. Vernant, J. F. Ritz, M. Peyret, H. Nankali, H. Nazari, Y. Djamour, R. Salamati, F. Tavakoli, J. Chéry, S. A. Mahan, and F. Masson, “Morphotectonic and geodetic evidence for a constant slip-rate over the last 45 kyr along the Tabriz fault (Iran),” Geophys. J. Int. 193, 1083–1094 (2013). https://doi.org/10.1093/gji/ggt041

    Article  Google Scholar 

  22. A. M. C. Şengör, D. Altıner, A. Cin, T. Ustaömer, and K. J. Hsü, “Origin and assembly of the Tethyside orogenic collage at the expense of Gondwana Land,” in Gondwana and Tethys, Vol. 37 of Geol. Soc. London, Spec. Publ., Ed. by M. G. Audley-Charles and A. Hallam (London, 1988), pp. 119–181.

  23. V. G. Trifonov, “World map of active faults (preliminary results of studies),” Quat. Int. 25, 3–12 (1995).

    Article  Google Scholar 

  24. V. G. Trifonov and I. Kozhurin, “Study of active faults: Theoretical and applied implications”, Geotectonics 44, 510–528 (2010).

    Article  Google Scholar 

  25. P. Vernant, “What can we learn from 20 years of interseismic GPS measurements across strike-slip faults,” Tectonophysics 644–645, 22–35 (2015). https://doi.org/10.1016/j.tecto.2015.01.013

    Article  Google Scholar 

  26. D. L. Wells and K. J. Coppersmith, “New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement,” Bull. Seismol. Soc. Am. 84, 974–1002 (1994).

    Google Scholar 

  27. Y. Zoka, The Earthquakes of Tabriz (Ketabsara, Tehran, 1989).

    Google Scholar 

  28. M. Zare, A Review on Ardabil 28 February 1997 Earthquake (Int. Inst. Seismol. Earthquake Eng., 1997).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is carried out in the frameworks of Project of Geodynamic Azerbaijan (common project between GSI, RIES and ETH Zurich). Our fieldwork was supported by SNF Research Grant (project 200021_153124/1) Switzerland. Field logistics and camping are provided by the GSI. We thank Dr. F. Herman and Dr. G. King from University Lausanne (Switzerland) for their efforts on OSL analyses. We are grateful to Prof. V.G. Trifonov (Geological Institute of Russian Academy of Sciences, Moscow) and Prof. V.V. Balagansky (Geological Institute of Cola Scientific Center of Russian Academy of Sciences, Murmansk region, Apatity) for their constructive review of the manuscript and appreciate the help and corrections by Editorial Supervisor M. N. Shoupletsova. We also thank all the participants from Geological Survey of Iran (Tabriz Center) who helped during the fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Faridi.

Additional information

Reviewers: V.G. Trifonov, V.V. Balagansky

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faridi, M., Nazari, H., Burg, JP. et al. Structural Characteristics, Paleoseismology and Slip Rate of the Qoshadagh Fault, Northwest of Iran. Geotecton. 53, 280–297 (2019). https://doi.org/10.1134/S0016852119020031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852119020031

Keywords:

Navigation