Skip to main content
Log in

Estimation of the Influence of the Dispersion and Diffraction Properties of the Ionosphere on the Transionospheric Channel Bandwidth

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

A hardware and software complex for estimating the dispersion distortion bandwidth and fading coherence bandwidth in a satellite (transionospheric) radio channel based on the results of GPS-monitoring of the ionosphere are theoretical substantiated and developed. The basis for solving this problem is development of a structural–physical model of the radio channel, which makes it possible to simultaneously take into account the phase dispersion of the wave and diffraction on small-scale inhomogeneities of the ionosphere. Analytical dependences of the dispersion distortion bandwidth and coherence of frequency-selective fading on the mean value and small-scale fluctuations of the total electron content of the ionosphere are obtained. It is shown that under conditions of ionospheric disturbances, the fading coherence bandwidth can be much smaller than the dispersion band. In accordance with the obtained dependences, a structure is developed for building a hardware and software complex for estimating the dispersion and coherence bandwidths of a satellite radio channel based on improvement of the method for GPS monitoring of the total electron content of the ionosphere with small-scale inhomogeneities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Aarons, J., Global morphology of ionospheric scintillations, Proc. IEEE, 1982, vol. 70, no. 4, pp. 360–378. https://doi.org/10.1109/PROC.1982.12314

    Article  Google Scholar 

  2. Afraimovich, E.L. and Perevalova, N.P., GPS-monitoring verkhnei atmosfery Zemli (GPS-Monitoring of the Earth’s Upper Atmosphere), Irkutsk: GU NTs RVKh VSNTs SO RAMN, 2006.

  3. Afraimovich, E.L., Astafyeva, E.I., Zhivetiev, I.V., Oinats, A.V., and Yasyukevich, Yu.V., Global electron content during solar cycle 23, Geomagn. Aeron. (Engl. Transl.), 2008, vol. 48, no. 2, pp. 187–200.

  4. Afraimovich, E.L., Edemsky, I.K., Voeykov, S.V., Yasyukevich, Yu.V., and Zhivetiev, I.V., MHD nature of ionospheric wave packets generated by the solar terminator, Geomagn. Aeron. (Engl. Transl.), 2010, vol. 50, no. 1, pp. 79–95.

  5. Al’pert, Ya.L., Rasprostranenie elektromagnitnykh voln i ionosfera (Propagation of Electromagnetic Waves and the Ionosphere), Moscow: Nauka, 1972.

  6. Bedrosian, E., Transionospheric propagation of FM signals, IEEE Trans. Commun. Tech., 1970, vol. 18, no. 2, pp. 102–109. https://doi.org/10.1109/TCOM.1970.1090338

    Article  Google Scholar 

  7. Bezler, I.V., Ishin, A.B., Konetskaya, E.V., and Tinin, M.V., Effect of anisotropy of ionospheric inhomogeneities in the detection of faults in phase GNSS measurements, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 3, pp. 342–350. https://doi.org/10.1134/S0016793219030046

  8. Blaunstein, N., Pulinets, S.A., Cohen, Y., Computation of the key parameters of radio signals propagating through a perturbed ionosphere in the land-satellite channel, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 2, pp. 204–215. https://doi.org/10.1134/S0016793213020047

  9. Bogusch, R.L., Gulgliano, F.W., and Knepp, D.L., Frequency-selective scintillation effects end decision feedback equalization in high data-rate satellite links, Proc. IEEE, 1983, vol. 71, no. 6, pp. 754–767. https://doi.org/10.1109/PROC.1983.12662

    Article  Google Scholar 

  10. Cherenkova, L.E. and Chernyshov, O.V., Rasprostranenie radiovoln (Propagation of Radio Waves), Moscow: Radio i svyaz, 1984.

  11. Davies, K., Ionospheric Radio (Electromagnetic Waves), London: Peter Peregrinus, 1990.

    Book  Google Scholar 

  12. Dolukhanov, M.P., Fluktuatsionnye protsessy pri rasprostranenii radiovoln (Fluctuation Processes during the Propagation of Radiowaves), Moscow: Svyaz’, 1971.

  13. Filipp, N.D., Oraevskii, V.N., Blaunstein, N., and Ruzhin, Yu.Ya., Evolyutsiya iskusstvennykh plazmennykh neodnorodnostei v ionosfere Zemli (Evolution of Artificial Plasma Inhomogeneities in the Earth’s Ionosphere), Kishinev: Shtiintsa, 1986.

  14. Gershman, B.N., Erukhimov, L.M., and Yashin, Yu.Ya., Volnovye yavleniya v ionosfere i kosmicheskoi plazme (Wave Phenomena in the Ionosphere and Cosmic Plasma), Moscow: Nauka, 1984.

  15. Goodman, J.M. and Aarons, J. Ionospheric effects on modern electronic systems, Proc. IEEE, 1990, vol. 78, no. 3, pp. 512–528.

    Article  Google Scholar 

  16. GPStation-6TM. GNSS Ionospheric Scintillation and TEC Monitor (GISTM) Receiver User Manual, 2012. https://hexagondownloads.blob.core.windows.net/public/Novatel/assets/Documents/Manuals/om-20000132/ om-20000132.pdf.

  17. Ionospheric propagation data and prediction methods required for the design of satellite services and systems, Recommendation ITU-R P.531-11, Geneva, 2012. https://www.itu.int/rec/R-REC-P.531-11-201202-S/en.

  18. Ivanov, V.A., Ivanov, D.V., Mikheeva, N.N., and Ryabova, M.I., Dispersionnye iskazheniya sistemnykh kharakteristik shirokopolosnykh ionosfernykh radiokanalov (Dispersion Distortions of System Characteristics of Ionospheric Broadband Radio Channels), Yoshkar-Ola: Povolzhskii gosudarstvennyi tekhnologicheskii universitet, 2015.

  19. Kalinin, A.I. and Cherenkova, L.E., Rasprostranenie radiovoln i rabota radiolinii (Radiowave Propagation and Operation of Radio Lines), Moscow: Svyaz’, 1971.

  20. Knepp, D.L., Multiple phase – screen calculation of the temporal behavior of stochastic waves, Proc. IEEE, 1983, vol. 71, no. 6, pp. 722–737. https://doi.org/10.1109/PROC.1983.12660

    Article  Google Scholar 

  21. Kolosov, M.A., Armand, N.A., Yakovlev, O.I., Rasprostranenie radiovoln pri kosmicheskoi svyazi (Radiowave Propagation in Space Communications), Moscow: Svyaz’, 1969.

  22. Koval’, S.A., Pashintsev, V.P., Kopytov, V.V., Manaenko, S.S., and Belokon’, D.A., Method for determining the frequency correlation interval of fading in a single-beam decameter radio line, Sist. Upr. Svyazi Bezop., 2022, no. 1, pp. 67–103. https://doi.org/10.24412/2410-9916-2022-1-67-103

  23. Kravtsov, Yu.A., Feizullin, Z.I., and Vinogradov, A.G., Prokhozhdenie radiovoln cherez atmosferu Zemli (Passage of Radiowaves through the Earth’s Atmosphere), Moscow: Radio i svyaz', 1983.

  24. Liu, C.H., Wernik, A.W., and Yeh, K.C., Propagation of pulse trains trough a random medium, IEEE Trans. Antennas Propag., 1974, vol. 22, no. 4, pp. 624–627. https://doi.org/10.1109/TAP.1974.1140830

    Article  Google Scholar 

  25. Maslov, O.N. and Pashintsev, V.P., Modeli transionosfernykh radiokanalov i pomekhoustoichivost' sistem kosmicheskoi svyazi (Models of Transionospheric Radio Channels and Noise Immunity of Space Communication Systems), Samara: PGATI, 2006.

  26. OEM6 Family Firmware Reference Guide, NovAtel, 2014. https://hexagondownloads.blob.core.windows.net/public/Novatel/assets/Documents/Manuals/om-20000129/ om-20000129.pdf.

  27. Pashintsev, V.P. and Akhmadeev, R.R., Prediction of noise immunity of satellite communication and navigation systems on the basis of ionospheric GPS monitoring, Elektrosvyaz’, 2015, no. 11, pp. 58–65.

  28. Pashintsev, V.P., Kolosov, L.V., Tishkin, S.A., and Smirnov, A.A., Influence of the ionosphere on signal detection in space communications systems, J. Commun. Technol. Electron., 1999, vol. 44, no. 2, pp. 132–139.

    Google Scholar 

  29. Pashintsev, V., Peskov, M., Smirnov, V., Smirnova, E., and Tynyankin, S., Procedure for extraction of small-scale variations in the total electron content of the ionosphere with the use of transionospheric sounding data, J. Commun. Technol. Electron., 2017, vol. 62, no. 12, pp. 1336–1342. https://doi.org/10.1134/S1064226917110158

    Article  Google Scholar 

  30. Pashintsev, V.P., Peskov, M.V., Shevchenko, V.A., and Polezhaev, A.V., Physical model of satellite radio channels with wave absorption and scintillation in the ionosphere, Infokommun. Tekhnol., 2018a, vol. 16, no. 4, pp. 366–379. https://doi.org/10.18469/ikt.2018.16.4.02

    Article  Google Scholar 

  31. Pashintsev, V.P., Peskov, M.V., Kalmykov, I.A., Zhuk, A.P., and Senokosov, M.A., Method for the evaluation of ionospheric diffractive and dispersive properties impact on the interference immunity of satellite communication systems, Int. J. Civ. Eng. Technol., 2018b, vol. 9, no. 13, pp. 44–61.

    Google Scholar 

  32. Pashintsev, V., Peskov, M., Kalmykov, I., Zhuk, A., and Toiskin, V., Method for forecasting of interference immunity of low frequency satellite communication systems, Ad Alta, 2020, vol. 10, no. 1, pp. 367–375.

    Google Scholar 

  33. Pashintsev, V., Peskov, M., Mikhailov, D., Senokosov, M., and Solomonov, D., Method for GPS-monitoring of small-scale fluctuations of the total electron content of the ionosphere for predicting the noise immunity of satellite communications, in Ionosphere, New Perspectives, Chemin, Y.-H., Ed., London: IntechOpen, 2023, pp. 13–33. https://doi.org/10.5772/intechopen.1001096.

  34. Perevalova, N.P., Estimated parameters of ground-based network of GPS/GLONASS receivers designed for monitoring ionospheric disturbances of natural and anthropogenic origin, Sol.-Zemnaya Fiz., 2011, vol. 19, pp. 124–133.

    Google Scholar 

  35. Pulinets, M.S., Budnikov, P.A., and Pulinets, S.A., Global ionospheric response to intense variations of solar and geomagnetic activity according to the data of the GNSS global networks of navigation receivers, Geomagn. Aeron. (Engl. Transl.), 2023, vol. 63, no. 2, pp. 172–185. https://doi.org/10.1134/S0016793222600898

  36. Romanova, N.Yu., Telegin, V.A., Panchenko, V.A., and Zhbankov, G.A., Relationship between the drift of medium-scale irregularities and the orientation of transverse anisotropy of small-scale irregularities in the F region of the midlatitude ionosphere, Geomagn. Aeron. (Engl. Transl.), 2022, vol. 62, nos. 1–2, pp. 71–85. 2022. https://doi.org/10.1134/S0016793222020128

  37. Ryzhkina, T.E. and Fedorova, L.V., Study of static and spectral transatmospheric radio signals of the VHF-microwave range, Zh. Radioelektron., 2001, no. 2. http://jre.cplire.ru/win/feb01/3/text.html.

  38. Shanmugam, S., Jones, J., Macaulay, A., Van Dierendonck, A.J., Evolution to modernized GNSS ionospheric scintillation and TEC monitoring, in Proc. 2012 Symp. Position Location and Navigation (PLANS), April 23–26, 2012, Myrtle Beach, S.C., 2012, pp. 265–273. https://doi.org/10.1109/PLANS.2012.6236891

  39. Somsikov, V.M., Solar terminator and dynamic phenomena in the atmosphere: A review, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 6, pp. 707–719.

  40. Spilker, J., Digital Communications by Satellite, Prentice-Hall, 1977; Moscow: Svyaz’, 1979.

  41. Teplyakov, I.M., Ionospheric distortion of digital signals with wideband modulation, Radiotekhnika, 1984, no. 4, pp. 8–13.

  42. Titova, M.A., Zakharov, V.I., and Pulinets, S.A., Interpretation of ionospheric disturbances during the largest earthquake by the using the differentiated approach for the special methods to processing satellite radio signals, Geomagn. Aeron. (Engl. Transl.), 2022, vol. 62, no. 6, pp. 783–801. https://doi.org/10.1134/S0016793222060159

  43. Voeykov, S.V., Berngardt, O.I., and Shestakov, N.V., Use of the index of TEC vertical variation disturbance in studying ionospheric effects of the Chelyabinsk meteorite, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 2, pp. 219–228. https://doi.org/10.1134/S0016793216020122

  44. Yasyukevich, Yu.V., Zakharov, V.I., Kunitsyn, V.E., and Voeikov, S.V., The response of the ionosphere to the earthquake in Japan on March 11, 2011 as estimated by different GPS-based methods, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 1, pp. 108–117. https://doi.org/10.1134/S0016793214060218

  45. Yeh, K.C. and Liu, C.H., Radio wave scintillations in the ionosphere, Proc. IEEE, 1982, vol. 70, no. 4, pp. 324–360. https://doi.org/10.1109/PROC.1982.12313

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 22-21-00768 (https://rscf.ru/project/22-21-00768), Methodology for Constructing of Structural–Physical Models of Transionospheric Radio Channels and Their Application to Analyzing Satellite Radio Systems under Ionospheric Scintillations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. P. Pashintsev, M. V. Peskov, D. A. Mikhailov or N. V. Kiselyov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by O. Pismenov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pashintsev, V.P., Peskov, M.V., Mikhailov, D.A. et al. Estimation of the Influence of the Dispersion and Diffraction Properties of the Ionosphere on the Transionospheric Channel Bandwidth. Geomagn. Aeron. 64, 248–263 (2024). https://doi.org/10.1134/S0016793223601059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223601059

Navigation