Skip to main content
Log in

F-Region Variations Prior to Magnetic Storms (a Review)

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The paper presents a review of variations in ionospheric parameters in the prestorm period obtained from an analysis of particular magnetic storms (case studies). It is demonstrated that, as a result of such analysis, deviations of these parameters (primarily, foF2 and TEC) are often observed on the days preceding the storm commencement (SC). Many authors pay attention to these facts and discuss their relation to space weather parameters, season, local time, and spatial distribution, and even offer suggestions on possible mechanisms of their formation. It is demonstrated that the number of such publications increased substantially in the preceding 4–5 years. It is emphasized that changes in the ionospheric state on prestorm days are detected not only in the “classical” parameters (foF2 and TEC), but also in other ionospheric characteristics. Publications dedicated directly to the problem of ionospheric precursors, their relation to space weather, and their possible role in forecasting coming magnetic storm are considered in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Adebesin, B.O. and Bakare, N., Mid-latitude ionospheric response and plasma distribution associated with the geomagnetic storm of 12–14 October 2016 in the European sector, SSRN, 2023. https://ssrn.com/abstract= 4179677. https://doi.org/10.2139/ssrn.4179677.

  2. Adekoya, B.J., Chukwuma, V.U., Adebiyi, S.J., Adebesin, B.O., Ikubanni, S.O., Bolaji, O.S., Oladunjoye, H.T., and Bisuga, O.O., Ionospheric storm effects in the EIA region in the American and Asian–Australian sectors during geomagnetic storms of October 2016 and September 2017, Adv. Space Res., 2023, vol. 72, no. 4, pp. 1237–1265. https://doi.org/10.1016/j.asr.2023.04.016

    Article  Google Scholar 

  3. Akinyemi, G.A., Kolawole, L.B., Dairo, O.F., Willoughby, A.A., Abdulrahim, R.B., and Rabiu, A.B., The response of the equatorial ionosphere over Nigeria to a geomagnetic storm event, Geomagn. Aeron. (Engl. Transl.), 2021, vol. 61, no. 4, pp. 647–657. https://doi.org/10.1134/S0016793221040022

  4. Astafyeva, E., Yasyukevich, Y.V., Maletckii, B., Oinats, A., Vesnin, A., Yasyukevich, A.S., Syrovatskii, S., and Guendouz, N., Ionospheric disturbances and irregularities during the 25–26 August 2018 geomagnetic storm, J. Geophys. Res.: Space, 2021, vol. 127, no. 1, p. e2021JA029843. https://doi.org/10.1029/2021JA029843

  5. Balodis, J., Normand, M., and Zarins, A., The movement of the GPS positioning discrepancy clouds at a mid-latitude region in march 2015, Remote Sens., 2023, vol. 15, no. 8, p. 2032. https://doi.org/10.3390/rs15082032

    Article  Google Scholar 

  6. Berényi, K.A., Heilig, B., Urbář, J., Kouba, D., Kis, Á., and Barta, V., Comprehensive analysis of the ionospheric response to the largest geomagnetic storms from solar cycle 24 over Europe, Front. Astron. Space Sci., 2023, vol. 10, p. 1092850. https://doi.org/10.3389/fspas.2023

    Article  Google Scholar 

  7. Blagoveshchensky, D.V., Kosmicheskaya pogoda i ionosfernye radiovolny (Space Weather and Ionospheric Radiowaves), Saarbrucken: Palmarium Academic Publ., 2012.

  8. Blagoveshchensky, D.V., Sergeeva, M.A., and Kozlovsky, A., Ionospheric parameters as the precursors of disturbed geomagnetic conditions, Adv. Space Res., 2017, vol. 60, no. 11, pp. 2437–2451. https://doi.org/10.1016/j.asr.2017.09.013

    Article  Google Scholar 

  9. Bojilova, R. and Mukhtarov, P., Comparative analysis of global and regional ionospheric responses during two geomagnetic storms on 3 and 4 February 2022, Remote Sens., 2023, vol. 15, no. 7, p. 1739. https://doi.org/10.3390/rs15071739

    Article  Google Scholar 

  10. Chernigovskaya, M.A., Shpynev, B.G., Yasyukevich, A.S., et al., Longitudinal variations of geomagnetic and ionospheric parameters in the Northern Hemisphere during magnetic storms according to multi-instrument observations, Adv. Space Res., 2021, vol. 67, no. 2, pp. 762–776. https://doi.org/10.1016/j.asr.2020.10.028

    Article  Google Scholar 

  11. Danilov, A., Ionospheric F2-region response to geomagnetic disturbances, Adv. Space Res., 2013, vol. 52, no. 3, pp. 343–366. https://doi.org/10.1016/j.asr.2013.04.019

    Article  Google Scholar 

  12. Danilov, A.D., Discussion of the problem of ionospheric precursors of magnetic storms, Geomagn. Aeron. (Engl. Transl.), 2022, vol. 61, suppl. 1, pp. S94–S102. https://doi.org/10.1134/S0016793222010042

  13. Danilov, A.D. and Belik, L.D., Thermospheric composition and the positive phase of an ionospheric storm, Adv. Space Res., 1992, vol. 12, no. 10, pp. 257–260. https://doi.org/10.1016/0273-1177(92)90475-D

    Article  Google Scholar 

  14. Danilov, A.D. and Konstantinova, A.V., Ionospheric precursors of geomagnetic storms. 1. A review of the problem, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 5, pp. 554–566. https://doi.org/10.1134/S0016793219050025

  15. Danilov, A.D. and Konstantinova, A.V., Detailed analysis of the behavior of the F2-layer critical frequency prior to geomagnetic storms. 2. Dependence on the time to the storm onset, Geliogeofiz. Issled., 2020a, no. 28, pp. 13–21.

  16. Danilov, A.D. and Konstantinova, A.V., Detailed analysis of the behavior of the F2-layer critical frequency prior to geomagnetic storms. 2. Dependence on the time to the storm onset, Geliogeofiz. Issled., 2020b, no. 28, pp. 13–21.

  17. Danilov, A.D. and Konstantinova, A.V., Detailed analysis of the behavior of the F2-layer critical frequency prior to geomagnetic storms. 4. Dependence on solar activity, Geliogeofiz. Issled., 2021a, no. 30, pp. 3–8. https://doi.org/10.54252/2304-7380_2021_30_3

  18. Danilov, A.D. and Konstantinova, A.V., Detailed analysis of the behavior of the F2-layer critical frequency prior to geomagnetic storms. 5. Dependence on the local time of storm onset, Geliogeofiz. Issled., 2021b, no. 30, pp. 15–21. https://doi.org/10.54252/2304-7380_2021_30_14

  19. Danilov, A.D. and Konstantinova, A.V., Detailed analysis of the behavior of the F2-layer critical frequency prior to geomagnetic storms. 3. Dependence on the storm intensity, Geliogeofiz. Issled., 2021c, no. 29, pp. 24–29. https://doi.org/10.54252/2304-7380_2021_29_24

  20. Danilov, A.D. and Konstantinova, A.V., Behavior of foF2 prior to geomagnetic storms according to Slough and Juliusruh data, Adv. Space Res., 2021d, vol. 67, no. 12, pp. 4066–4077. https://doi.org/10.1016/j.asr.2021.02.016

    Article  Google Scholar 

  21. Danilov, A.D., Morozova, L.D., and Mirmovich, E.G., On the possible nature of the positive phase of ionospheric storms, Geomagn. Aeron. (Engl. Transl.), 1985, vol. 25, no. 5, pp. 768–772.

  22. de Abreu, A.J., Correia, E., de Jesus, R., Venkatesh, K., Macho, E.P., Roberto, M., Fagundes, P.R., and Gende, M., Statistical analysis on the ionospheric response over South American mid-and near high-latitudes during 70 intense geomagnetic storms occurred in the period of two decades, J. Atmos. Sol.-Terr. Phys., 2023, vol. 245, p. 106060. https://doi.org/10.1016/j.jastp.2023.106060

    Article  Google Scholar 

  23. Dugassa, T., Mezgebe, N., Habarulema, J.B., Habyarimana, V., and Oljira, A., Ionospheric response to the 23–31 August 2018 geomagnetic storm in the Europe–African longitude sector using multi-instrument observations, Adv. Space Res., 2023, vol. 71, no. 5, pp. 2269–2287. https://doi.org/10.1016/j.asr.2022.10.063

    Article  Google Scholar 

  24. Fetisova, N.V. and Mandrikova, O.V., Modeling and analysis of ionospheric parameters based on a generalized multicomponent model, Vestn. Kamchatskoi Reg. Assots. Uchebno-Nauchnyi Tsentr, Fiz.-Mat. Nauki, 2022, vol. 41, no. 4, pp. 89–106. https://doi.org/10.26117/2079-6641-2022-41-4-89-106

    Article  Google Scholar 

  25. Giri, A., Adhikari, B., Shrestha, B., and Rimal, S., Wavelet coherence analysis foF2 over boulder station during different geomagnetic activity, Himalayan Phys., 2023, vol. 10, no. 1, pp. 66–77.

    Article  Google Scholar 

  26. Habyarimana, V., Habarulema, J.B., and Dugassa, T., Analysis of ionospheric stormtime effects over the East African sector during the 17 March 2013 and 2015 geomagnetic storms, Earth Planets Space, 2023, vol. 75, p. 58. https://doi.org/10.1186/s40623-023-01812-9

    Article  Google Scholar 

  27. Idosa, C., Adhikari, B., and Shogile, K., Features of ionospheric total electron content over high latitude regions during geomagnetic storm of November 04, 2021 variations of TEC over high latitude regions during geomagnetic storm of November 04, 2021, Ind. J. Phys. A, 2023. https://doi.org/10.1007/s12648-023-02746-4

  28. Imtiaz, N., Ali, O.H., and Rizvi, H., Impact of the intense geomagnetic storm of August, 2018 on the equatorial and low latitude ionosphere, Astrophys. Space Sci., 2021, vol. 366, no. 11, p. 106. https://doi.org/10.1007/s10509-021-04009-2

    Article  Google Scholar 

  29. Joshua, B.W., Adeniyi, J.O., Olawepo, A., Rabiu, B., Daniel, O., Adebiyi, S.J., Adebesin, B.O., Ikubanni, S.O., and Abdurahim, B., Latitudinal dependence of ionospheric responses to some geomagnetic storms during low solar activity, Geomagn. Aeron. (Engl. Transl.), 2021a, vol. 61, no. 3, pp. 418–437. https://doi.org/10.1134/S0016793221030063

  30. Joshua, B.W., Adeniyi, J.O., Amory-Mazaudier, C., and Adebiyi, S.J., On the pre-magnetic storm signatures in NmF2 in some equatorial, low and mid-latitude stations, J. Geophys. Res.: Space, 2021b, vol. 126, no. 8, p. e2021JA029459. https://doi.org/10.1029/2021JA029459

  31. Kane, R.P., Global evolution of F2-region storms, J. Atmos. Terr. Phys., 1973, vol. 35, no. 11, pp. 1953–1966. https://doi.org/10.1016/0021-9169(73)90112-8

    Article  Google Scholar 

  32. Kane, R.P., Global evolution of the ionospheric electron content during some geomagnetic storms, J. Atmos. Terr. Phys., 1975, vol. 37, no. 4, pp. 601–611. https://doi.org/10.1016/0021-9169(75)90055-0

    Article  Google Scholar 

  33. Katsko, S.V. and Emelyanov, L.Ya., Variations in the mid-latitude ionosphere parameters over Ukraine during the very moderate magnetic storm on December 18, 2019, Kinemat. Phys. Celest., 2023, vol. 39, no. 2, pp. 78–89. https://doi.org/10.3103/S0884591323020034

    Article  Google Scholar 

  34. Konstantinova A.V., Danilov A.D. Ionospheric precursors of magnetic storms. 2. Analysis of Slough station data, Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 3, pp. 311–317. https://doi.org/10.1134/S001679322003010X

  35. Konstantinova A.V., Danilov A.D. Ionospheric precursors of magnetic storms. 3. Analysis of Juliusruh station data, Geomagn. Aeron. (Engl. Transl.), 2021, vol. 61, no. 3, pp. 341–348. https://doi.org/10.1134/S0016793221030087

  36. Kumar, V.V. and Parkinson, M.L., A global scale picture of ionospheric peak electron density changes during geomagnetic storms, Space Weather, 2017, vol. 15, no. 4, pp. 637–652. https://doi.org/10.1002/2016SW001573

    Article  Google Scholar 

  37. Lissa, D., Srinivasu, V.K.D., Prasad, D.S.V.V.D., and Niranjan, K., Ionospheric response to the 26 August 2018 geomagnetic storm using GPS-TEC observations along 80° E and 120° E longitudes in the Asian sector, Adv. Space Res., 2020, vol. 66, no. 6, pp. 1427–1440. https://doi.org/10.1016/j.asr.2020.05.025

    Article  Google Scholar 

  38. Liu, L., Wan, W., Zhang, M-L., Zhao, B., and Ning, B., Prestorm enhancements in NmF2 and total electron content at low latitudes, J. Geophys. Res.: Space, 2008, vol. 113, no. 2, p. A02311. https://doi.org/10.1029/2007JA012832

    Article  Google Scholar 

  39. Mandrikova, O.V., Fetisova, N.V., and Polozov, Yu.A., Method for modeling of ionospheric parameters and detection of ionospheric disturbances, Comput. Math. Math. Phys., 2021, vol. 61, no. 7, pp. 1094–1105. https://doi.org/10.1134/S0965542521070137

    Article  Google Scholar 

  40. Mansilla, G.A. and Zossi, M.M., Ionospheric response to the 26 August 2018 geomagnetic storm along 280° E and 316° E in the South American sector, Adv. Space Res., 2021, vol. 69, no. 1, pp. 48–58. https://doi.org/10.1016/j.asr.2021.08.002

    Article  Google Scholar 

  41. Mansilla, G.A. and Zossi, M.M., Response of the South American equatorial ionization anomaly to an intense geomagnetic storm, Adv. Space Res., 2023.

  42. Mikhailov, A.V. and Perrone, L., Pre-storm NmF2 enhancements at middle latitudes: Delusion or reality?, Ann. Geophys., 2009, vol. 27, no. 3, pp. 1321–1330. https://doi.org/10.5194/angeo-27-1321-2009

    Article  Google Scholar 

  43. Mikhailov, A.V. and Perrone, L., Pre-storm F2-layer Q-disturbances at middle latitudes: Do they exist?, J. Atmos. Sol.-Terr. Phys., 2021, vol. 213, p. 105473. https://doi.org/10.1016/j.jastp.2020.105473

    Article  Google Scholar 

  44. Mishra, R.K., Adhikari, B., Chapagain, N.G., Baral, R., Das, P.K., Klausner, V., and Sharma, M., Variation on solar wind parameters and Total Electron Content over middle-low latitude regions during intense geomagnetic storms, Radio Sci., 2020, vol. 55, no. 11, p. e2020RS007129. https://doi.org/10.1029/2020RS007129

  45. Mosna, Z., Kouba, D., Knizova, P.K., Buresova, D., Chum, J., Sindelarova, T., Urbar, J., Boska, J., and Saxonbergova-Jankovicova, D., Ionospheric storm of September 2017 observed at ionospheric station Pruhonice, the Czech Republic, Adv. Space Res., 2020, vol. 65, no. 1, pp. 115–128. https://doi.org/10.1016/j.asr.2019.09.024

    Article  Google Scholar 

  46. Naidu, P.P., Latha, T.M., and Devi, M.I., Hemispheric asymmetry in ionospheric response to geomagnetic storms at midlatitudes: Comparison with IRI model predictions, J. Atmos. Sol.-Terr. Phys., 2023, JASTP-D-22-00272.

  47. Picanço, G.A.S., Denardini, C.M., Nogueira, P.A.B., et al., Equatorial ionospheric response to storm-time electric fields during two intense geomagnetic storms over the Brazilian region using a disturbance ionosphere index, J. Atmos. Sol.-Terr. Phys., 2021, vol. 223, p. 105734. https://doi.org/10.1016/j.jastp.2021.105734

    Article  Google Scholar 

  48. Sawadogo, S., Gnabahou, D.A., Sandwidi, S.A., and Ouattara, F., Koudougou (Burkina Faso, Africa), GPS-TEC response to recurrent geomagnetic storms during solar cycle 24 declining phase, Int. J. Geophys., 2023, vol. 2023, p. 4181389. https://doi.org/10.1155/2023/4181389

    Article  Google Scholar 

  49. Sharan, A., Analysing the effect of geomagnetic storms on the F2-region ionosphere in South Pacific region, Geomagn. Aeron. (Engl. Transl.), 2022, vol. 62, no. 6, pp. 802–814. https://doi.org/10.1134/S0016793222060147

  50. Singh, A., Rathore, V.S., Kumar, S., Rao, S.S., Singh, S.S., and Singh, A.K., Effect of intense geomagnetic storms on low-latitude TEC during the ascending phase of the solar cycle 24, J. Astrophys. Astron., 2021, vol. 42, no. 2, p. 99. https://doi.org/10.1007/s12036-021-09774-8

    Article  Google Scholar 

  51. Spogli, L., Sabbagh, D., Regi, M., et al., Ionospheric response over Brazil to the August 2018 geomagnetic storm as probed by CSES-01 and Swarm satellites and by local ground-based observations, J. Geophys. Res.: Space, 2020, vol. 126, no. 2, p. e2020JA028368. https://doi.org/10.1029/2020JA028368

  52. Swarnalingam, N., Wu, D.L., and Gopalswamy, N., Interhemispheric asymmetries in ionospheric electron density responses during geomagnetic storms: A study using space-based and ground-based GNSS and ampere observations, J. Geophys. Res.: Space, 2022, vol. 127, no. 5, p. e2021JA030247. https://doi.org/10.1029/2021JA030247

  53. Timoçin, E., The effect of geomagnetic storms on foF2 values over low latitude ionosonde station, Sakarya Univ. J. Sci., 2019, vol. 23, no. 6, pp. 1237−1241. https://doi.org/10.16984/saufenbilder.559334

    Article  Google Scholar 

  54. Ye, H., Yi, W., Zhou, B., et al., Multi-instrumental observations of midlatitude plasma irregularities over Eastern Asia during a moderate magnetic storm 3 on 16 July 2003, Remote Sens., 2023, vol. 15, no. 4, p. 1160. https://doi.org/10.3390/rs15041160

    Article  Google Scholar 

  55. Younas, W., Khan, M., Amory-Mazaudier, C., Amaechi, P.O., and Fleury, R., Middle and low latitudes hemispheric asymmetries in ΣO/N2 and TEC during intense magnetic storms of solar cycle 24, Adv. Space Res., 2022, vol. 69, no. 1, pp. 220–235. https://doi.org/10.1016/j.asr.2021.10.027

    Article  Google Scholar 

  56. Zhai, C., Tang, S., Peng, P., Cheng, X., and Zheng, D., Driver of the positive ionospheric storm over the South American sector during 4 November 2021 geomagnetic storm, Remote Sens., 2023a, vol. 15, no. 1, p. 111. https://doi.org/10.3390/rs15010111

    Article  Google Scholar 

  57. Zhai, C., Chen, Y., Cheng, X., and Yin, X., Spatiotemporal evolution and drivers of the four ionospheric storms over the American sector during the August 2018 geomagnetic storm, Atmosphere, 2023b, vol. 14, no. 2, p. 335. https://doi.org/10.3390/atmos14020335

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Danilov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Danilov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilov, A.D., Konstantinova, A.V. F-Region Variations Prior to Magnetic Storms (a Review). Geomagn. Aeron. 63, 671–685 (2023). https://doi.org/10.1134/S0016793223600649

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223600649

Navigation