Skip to main content
Log in

Infrared Glow of Nitric Oxide in Earth’s Middle Atmosphere during GLE Events of the 23rd Solar Cycle

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The article considers the production kinetics of vibrationally excited NO(X2Π, \({v}\) > 0) molecules at heights of Earth’s middle atmosphere during the precipitation of high-energy protons. The intensity profiles of the luminescence of the infrared bands of nitric oxide at 5.3 and 2.7 μm were calculated for precipitation of high-energy protons into Earth’s atmosphere during the events GLE65, GLE67, GLE69, and GLE70 of the 23rd solar cycle. Calculations have shown that the highest integral luminescence intensity values of the 5.3 and 2.7 μm bands were obtained for GLE69: 5.7 and 0.18 kR (kilorayleighs), respectively. Comparison of the calculation results for the 5.3 µm band during the GLE69 event with experimental data obtained from the TIMED spacecraft on January 20, 2005, showed that the calculation results were overestimated by a factor of 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Agostinelli, S., Allisonas, J., Amako, K., et al., Geant4: A simulation toolkit, Nucl. Instrum. Methods Phys. Res., 2003, vol. 506, pp. 250–303.

    Article  Google Scholar 

  2. Bernstein, R.B. and Levine, R.D., Role of energy in reactive molecular scattering: An information–theoretic approach, Adv. At. Mol. Phys., 1976, vol. 11, pp. 215–297.

    Article  Google Scholar 

  3. Bouziane, A., Ferdi, M.A., and Djebli, M., Nitric oxide vibrationally excited levels and controlling processes in the Earth’s upper atmosphere during the daytime, Adv. Space Res., 2022, vol. 69, no. 2, pp. 905–914.

    Article  Google Scholar 

  4. Burkholder, J.B., Sander, S.P., Abbatt, J., Barker, J.R., Huie, R.E., Kolb, C.E., Kurylo, M.J., Orkin, V.L., Wilmouth, D.M., and Wine, P.H., Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, Jet Propulsion Laboratory Publ. 15-10, Pasadena, Calif.: Jet Propulsion Laboratory, 2015.

  5. Caledonia, G.E. and Kennealy, J.P., No infrared radiation in the upper atmosphere, Planet. Space Sci., 1982, vol. 30, no. 10, pp. 1043–1056.

    Article  Google Scholar 

  6. Campbell, L. and Brunger, M.J., Electron impact contribution to infrared no emissions in auroral conditions, Geophys. Res. Lett., 2007, vol. 34, no. 22, p. L22102.

    Article  Google Scholar 

  7. Cartwright, D.C., Brunger, M.J., Campbell, L., Mojarrabi, B., and Teubner, P.J.O., Nitric oxide excited under auroral conditions: excited state densities and band emissions, J. Geophys. Res.: Space, 2000, vol. 105, no. A9, pp. 20 857–20 867.

    Article  Google Scholar 

  8. Clark, I.D. and Wayne, R.P., Kinetics of the reaction between atomic nitrogen and molecular oxygen in the ground (3 \(\Sigma _{{\text{g}}}^{ - }\)) and first excited (1Δg) states, Proc. R. Soc. London A, 1970, vol. 316, no. 1527, pp. 539–550.

    Article  Google Scholar 

  9. Dorman, L.I., Eksperimental’nye i teoreticheskie osnovy astrofiziki kosmicheskikh luchei (Experimental and Theoretical Foundations of Cosmic Ray Astrophysics), Moscow: Nauka, 1975.

  10. Funke, B., Lopez-Puertas, M., Garcia-Comas, M., Kaufmann, M., Hopfner, M., and Stiller, G.P., GRANADA: A Generic RAdiative traNsfer AnD non-LTE population algorithm, J. Quant. Spectrosc. Radiat. Transfer, 2012, vol. 113, no. 14, pp. 1771–1817.

    Article  Google Scholar 

  11. Gordiets, B.F., Vibrational relaxation of anharmonic N2 molecules and the concentration of nitric oxide in a disturbed thermosphere, Geomagn. Aeron., 1977, vol. 17, no. 5, pp. 871–878.

    Google Scholar 

  12. Gordiets, B.F. and Markov, M.N., IR-radiation and NO concentration in a highly heated upper atmosphere, Geomagn. Aeron., 1983, vol. 23, no. 3, pp. 446–450.

    Google Scholar 

  13. Gordiets, B.F., Kulikov, Yu.N., Markov, M.N., and Marov, M.Ya., Numerical modelling of the thermospheric heat budget, J. Geophys. Res.: Space, 1982, vol. 87, no. A6, pp. 4504–4514.

    Article  Google Scholar 

  14. Gordillo-Vazquez, F.J., Air plasma kinetics under the influence of sprites, J. Phys. D: Appl. Phys., 2008, vol. 41, no. 23, p. 234016.

    Article  Google Scholar 

  15. Green, B.D., Caledonia, G.E., Murphy, R.E., and Robert, F.H., The vibrational relaxation of NO(ν = 1–7) by O2, J. Chem. Phys., 1982, vol. 76, no. 5, pp. 2441–2448.

    Article  Google Scholar 

  16. Hancock, G., Morrison, M., and Saunders, M., Vibrational relaxation of NO(v = 1–16) in collisions with O2 studied by time resolved Fourier transform infrared emission, Chem. Phys. Lett., 2006, vol. 425, nos. 4–6, pp. 216–220.

    Article  Google Scholar 

  17. Kirillov, A.S. and Aladjev, G.A., Estimation of atomic oxygen concentrations from measured intensities of infrared nitric oxide radiation, Ann. Geophys., 1998, vol. 16, no. 7, pp. 847–852.

    Article  Google Scholar 

  18. Kirillov, A.S., Belakhovskii, V.B., Maurchev, E.A., Balabin, Yu.V., Germanenko A.V., and Gvozdevskii, B.B., Luminescence of molecular nitrogen and molecular oxygen in the Earth’s middle atmosphere during the precipitation of high-energy protons, Geomagn. Aeron. (Engl. Transl.), 2021, vol. 61, no. 6, pp. 864–870.

  19. Kirillov, A.S., Belakhovskii, V.B., Maurchev, E.A., Balabin, Yu.V., Germanenko A.V., and Gvozdevskii, B.B., The electronic kinetics of molecular nitrogen and molecular oxygen in the Earth’s middle atmosphere during the GLE events of solar cycle 23, Geomagn. Aeron. (Engl. Transl.), 2022, vol. 62, suppl. 1, pp. S87–S95.

  20. Kirillov, A.S., Belakhovsky, V.B., Maurchev, E.A., Balabin, Yu.V., Germanenko, A.V., and Gvozdevsky, B.B., Vibrational kinetics of NO and N2 in the Earth’s middle atmosphere during GLE69 on January 20, 2005, J. Geophys. Res.: Atmos., 2023, vol. 128, no. 17, p. e2023JD038600.

  21. Krivolutsky, A.A. and Repnev, A.I., Vozdeistvie kosmicheskikh faktorov na ozonosferu Zemli (Influence of Space Factors on the Earth’s Ozonosphere), Moscow: GEOS, 2009.

  22. Krivolutsky, A.A. and Repnev, A.I., Impact of space energetic particles on the Earth’s atmosphere (a review), Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 6, pp. 685–716.

  23. Kockarts, G., Nitric oxide cooling in the terrestrial thermosphere, Geophys. Res. Lett., 1980, vol. 7, no. 2, pp. 137–140.

    Article  Google Scholar 

  24. Lopez-Puertas, M. and Taylor, F.W., Non-LTE Radiative Transfer in the Atmosphere, Singapore: World Scientific, 2001.

    Book  Google Scholar 

  25. Maurchev, E.A. and Balabin, Yu.V., RUSCOSMICS: The new software toolbox for detailed analysis of cosmic ray interactions with matter, J. Sol.–Terr. Phys., 2016, vol. 2, no. 4, pp. 3–10.

    Google Scholar 

  26. Maurchev, E.A., Balabin, Yu.V., Gvozdevsky, B.B., and Vashenyuk, E.V., A new numerical model for investigating cosmic rays in the Earth’s atmosphere, Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 5, pp. 657–659.

    Article  Google Scholar 

  27. Maurchev, E.A., Mikhalko, E.A., Germanenko, A.V., Balabin, Yu.V., and Gvozdevsky, B.B., RUSCOSMICS software package as a tool for estimating the Earth’s atmosphere ionization rate by cosmic ray protons, Bull. Russ. Acad. Sci.: Phys., 2019, vol. 83, no. 5, pp. 653–656.

    Article  Google Scholar 

  28. Mlynczak, M., Martin-Torres, F.J., Russell, J., et al., The natural thermostat of nitric oxide emission at 5.3 μm in the thermosphere observed during the solar storms of April 2002, Geophys. Res. Lett., 2003, vol. 30, no. 21, p. 2100.

    Article  Google Scholar 

  29. Nesbet, R.K., Surprisal theory, in Theoretical Chemistry. Theory of Scattering, Henderson, D., Ed., New York: Academic Press, 1981, pp. 79–126.

    Google Scholar 

  30. Porter, H.S., Jackman, C.H., and Green, A.E.S., Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air, J. Chem. Phys., 1976, vol. 65, no. 1, pp. 154–167.

    Article  Google Scholar 

  31. Rawlins, W.T., Caledonia, G.E., Gibson, J.J., and Stair, A.T., Jr., Infrared emission from NO(Δν = 1) in an aurora: Spectral analysis and kinetic interpretation of HIRIS measurements, J. Geophys. Res.: Space, 1981, vol. 86, no. A3, pp. 1313–1324.

    Article  Google Scholar 

  32. Rawlins, W.T., Fraser, M.E., and Miller, S.M., Rovibrational excitation of nitric oxide in the reaction of O2 with metastable atomic nitrogen, J. Phys. Chem., 1989, vol. 93, no. 3, pp. 1097–1107.

    Article  Google Scholar 

  33. Rawlins, W.T., Person, J.C., Fraser, M.E., Miller, S.M., and Blumberg, W.A.M., The dipole moment and infrared transition strengths of nitric oxide, J. Chem. Phys., 1998, vol. 109, no. 9, pp. 3409–3417.

    Article  Google Scholar 

  34. Rusanov, V.D. and Fridman, A.A., Fizika khimicheski aktivnoi plazmy (The Physics of Chemically Active Plasma), Moscow: Nauka, 1984.

  35. Sentman, D.D., Stenbaek-Nielsen, H.C., McHarg, M.G., and Morrill, J.S., Plasma chemistry of sprite streamers, J. Geophys. Res.: Atmos., 2008, vol. 113, no. 11, p. D11112.

    Google Scholar 

  36. Sharma, R.D., Dothe, H., von Esse, F., Kharchenko, V.A., Sun, Y., and Dalgarno, A., Production of vibrationally and rotationally excited no in the night time terrestrial thermosphere, J. Geophys. Res.: Space, 1996, vol. 101, no. A9, pp. 19 707–19 713.

    Article  Google Scholar 

  37. Shirokov, Yu.M. and Yudin, N.P., Yadernaya fizika. Uchebnoe posobie (Nuclear Physics: A Study Guide), Moscow: Nauka, 1980.

  38. Simpson, J.A., Introduction to the galactic cosmic radiation, in Composition and Origin of Cosmic Rays, NATO ASI Series (Series C: Mathematical and Physical Sciences), Shapiro, M.M., Ed., Dordrecht: Springer, 1983.

  39. Turunen, E., Verronen, P.T., Seppala, A., Rodger, C.J., Clilverd, M.A., Tamminen, J., Enell, C.-F., and Ulich, T., Impact of different energies of precipitating particles on NOx generation in the middle and upper atmosphere during geomagnetic storms, J. Atmos. Sol.-Terr. Phys., 2009, vol. 71, nos. 10–11, pp. 1176–1189.

    Article  Google Scholar 

  40. Vashenyuk, E.V., Balabin, Yu.V., and Gvozdevsky, B.B., Features of relativistic solar proton spectra derived from ground level enhancement events (GLE) modeling, Astrophys. Space Sci. Trans., 2011, vol. 7, no. 4, pp. 459–463.

    Article  Google Scholar 

  41. Venkataramani, K., Yonker, J.D., and Bailey, S.M., Contribution of chemical processes to infrared emissions from nitric oxide in the thermosphere, J. Geophys. Res.: Space, 2016, vol. 121, no. 3, pp. 2450–2461.

    Article  Google Scholar 

  42. Winick, J.R., Mlynczak, M.G., Wintersteiner, P.P., Martin-Torres, F.-J., Picard, R.H., Paxton, L., Lopez-Puertas, M., Russell, J.M., Christensen, A., and Gordley, L., Thermospheric infrared radiance response to the April 2002 geomagnetic storm from SABER infrared and GUVI ultraviolet limb data, Proc. SPIE, 2004, vol. 5235, pp. 250–263.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Professor Lopez-Puertas M. (Granada, Spain) for providing data on the 5.3 μm infrared band emission obtained on January 20, 2005, on the TIMED spacecraft.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Kirillov or V. B. Belakhovsky.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirillov, A.S., Belakhovsky, V.B., Maurchev, E.A. et al. Infrared Glow of Nitric Oxide in Earth’s Middle Atmosphere during GLE Events of the 23rd Solar Cycle. Geomagn. Aeron. 63, 802–810 (2023). https://doi.org/10.1134/S0016793223600637

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223600637

Navigation