Skip to main content
Log in

Geomagnetic Effects of the Partial Solar Eclipse of 11 September 2007 in Chile and Antarctica

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

A report of the geomagnetic variations observed in Chile and Antarctica during the partial solar eclipse of September 11, 2007, is presented. The greatest eclipse occurred at 1231:22 UTC in the coordinates 60° S, 90.2° W reaching a maximum magnitude of 0.7505 when the Moon covered 67.21% of the disk of the Sun. A dataset with the geomagnetic field in X, Y, Z coordinates was collected from six magnetic ground stations belonging to the South American Meridional B-Field Array (SAMBA) network. A comparison was made of the data recorded with a baseline obtained of the international Q-days of the month itself. Results show a decrease in the X and an increase in the Y component during the time window of the eclipse in total synchrony with the penumbra passage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Adushkin, V.V., Gavrilov, B.G., Gorelyi, K.I., Rybnov, Y.S., and Kharlamov, V.A., Geophysical effects of the March 29, 2006, solar eclipse, Dokl. Earth Sci., 2007, vol. 417A, no. 9, pp. 1393–1397. .https://doi.org/10.1134/S1028334X07090218

    Article  Google Scholar 

  2. Akimov, A.L. and Chernogor, L.F., Effects of the solar eclipse of August 1, 2008, in the Earth’s lower atmosphere, Kinematics Phys. Celest. Bodies, 2010, vol. 26, no. 3, pp. 135–145. https://doi.org/10.3103/S0884591310030050

    Article  Google Scholar 

  3. Aplin, K.L., Scott, C.J., and Gray, S.L., Atmospheric changes from solar eclipses, Philos. Trans. Royal Soc. A, 2016, vol. 374, no. 2077, p. 20150217. https://doi.org/10.1098/rsta.2015.0217

    Article  Google Scholar 

  4. Ateş, A., Büyüksaraç, A., and Bektaş, Ö., Geophysical variations during the total solar eclipse in 2006 in Turkey, Turk. J. Earth Sci., 2011, vol. 20, no. 3, pp. 337–342. https://doi.org/10.3906/yer-0906-14

    Article  Google Scholar 

  5. Ateş, A., Ekinci, Y.L., Buyuksarac, A., Aydemir, A., and Demirci, A., Statistical analysis of geomagnetic field variations during the partial solar eclipse on 2011 January 4 in Turkey, Res. Astron. Astrophys., 2015, vol. 15, no. 5, pp. 742–752. https://doi.org/10.1088/16744527/15/5/011

    Article  Google Scholar 

  6. Babakhanov, I.Y., Belinskaya, A.Y., Bizin, M.A., Grekhov, O.M., Khomutov, S.Y., Kuznetsov, V.V., and Pavlov, A.F., The geophysical disturbances during the total solar eclipse of 1 August 2008 in Novosibirsk, Russia, J. Atmos. Sol.-Terr. Phys., 2013, vol. 92, pp. 1–6. https://doi.org/10.1016/j.jastp.2012.09.016

    Article  Google Scholar 

  7. Bencze, P., Heilig, B., Zieger, B., Szendröi, J., Verő, J., Lühr, H., Yumoto, K., Tanaka, Y., and Střeštík, J., Effect of the August 11, 1999 total solar eclipse on geomagnetic pulsations, Acta Geod. Geophys. Hung., 2007, vol. 42, no. 1, pp. 23–58. https://doi.org/10.1556/AGeod.42.2007.1.2

    Article  Google Scholar 

  8. Bravo, M., Martínez-Ledesma, M., Foppiano, A., Urra, B., Ovalle, E., Villalobos, C., Souza, J., Carrasco, E., Muñoz, P., Tamblay, L., Vega-Jorquera, P., Marín, J., Pacheco, R., Rojo, E., Leiva, R., and Stepanova, M., First report of an eclipse from Chilean ionosonde observations: Comparison with total electron content estimations and the modeled maximum electron concentration and its height, J. Geophys. Res.: Space Phys., 2020, vol. 125, p. e2020JA027923. https://doi.org/10.1029/2020JA027923

  9. Chapman, S., The effect of a solar eclipse on the Earth’s magnetic field, Terr. Magn. Atmos. Electr., 1933, vol. 38, no. 3, pp. 175–183. https://doi.org/10.1029/TE038i003p00175

    Article  Google Scholar 

  10. Chapman, S. and Bartel, J., Geomagnetism, Oxford: Oxford Univ. Press, 1940, vols. 1–2, pp. 794–798.

    Google Scholar 

  11. Chen, G., Zhao, Z., Zhang, Y., Yang, G., Zhou, C., Huang, S., Li, T., Li, N., and Sun, H., Gravity waves and spread es observed during the solar eclipse of 22 July 2009, J. Geophys. Res.: Space Phys., 2011, vol. 116, no. 9, pp. A09314(1)–A09314(7). https://doi.org/10.1029/2011JA016720

  12. Cullington, A.L., Geomagnetic effects of the solar eclipse, 12 October 1958, at Apia, Western Samoa, New Zealand J. Geol. Geophys., 1962, vol. 5, no. 3, pp. 499–507. https://doi.org/10.1080/00288306.1962.10420103

    Article  Google Scholar 

  13. Hvoždara, M. and Prigancová, A., Geomagnetic effects due to an eclipse-induced low-conductivity ionospheric spot, J. Geophys. Res., 2002, vol. 107, no. A12, pp. 1467(1)–1467(13). https://doi.org/10.1029/2002JA009260

  14. Ilić, L., Kuzmanoski, M., Kolarž, P., Nina, A., Srećković, V., Mijić, Z., Bajčetić, J., and Andrić, M., Changes of atmospheric properties over Belgrade, observed using remote sensing and in situ methods during the partial solar eclipse of 20 March 2015, J. Atmos. Sol.-Terr. Phys., 2018, vol. 171, no. 3, pp. 250–259. https://doi.org/10.1016/j.jastp.2017.10.001

    Article  Google Scholar 

  15. Jakowski, N., Stankov, S., Wilken, V., Borries, C., Altadill, D., Chum, J., Buresova, D., Boska, J., Sauli, P., Hruska, F., and Cander, L., Ionospheric behavior over Europe during the solar eclipse of 3 October 2005, J. Atmos. Sol.-Terr. Phys., 2008, vol. 171, no. 3, pp. 250–259. https://doi.org/10.1016/j.jastp.2007.02.016

    Article  Google Scholar 

  16. Jenan, R., Dammalage, T.L., and Panda, S.K., Ionospheric total electron content response to September-2017 geomagnetic storm and December-2019 annular solar eclipse over Sri Lankan region, Acta Astronaut., 2021, vol. 180, pp. 575–587. https://doi.org/10.1016/j.actaastro.2021.01.006

    Article  Google Scholar 

  17. Kim, J.-H. and Chang, H.-Y., Statistical analysis of geomagnetic field variations during solar eclipses, Adv. Space Res., 2018a, vol. 61, no. 8, pp. 2040–2049. https://doi.org/10.1016/j.asr.2018.01.022

    Article  Google Scholar 

  18. Kim, J.-H. and Chang, H.-Y., Geomagnetic field variations observed by INTERMAGNET during 4 total solar eclipses, J. Atmos. Sol.-Terr. Phys., 2018b, vol. 172, pp. 107–116. https://doi.org/10.1016/j.jastp.2018.03.023

    Article  Google Scholar 

  19. Kim, J.-H. and Chang, H.-Y., Geomagnetic field variations during solar eclipses and the geographic location of observing sites, J. Korean Astron. Soc., 2018c, vol. 51, no. 4, pp. 119–127. https://doi.org/10.5303/JKAS.2018.51.4.119

    Article  Google Scholar 

  20. Kumar, S., Singh, A.K., and Singh, R.P., Ionospheric response to total solar eclipse of 22 July 2019 in different Indian regions, Ann. Geophys., 2013, vol. 31, pp. 1549–1558. https://doi.org/10.5194/angeo-31-1549-2013

    Article  Google Scholar 

  21. Ladynin, A.V., Semakov, N.N., and Khomutov, S.Yu., Changes in the daily geomagnetic variation during the total solar eclipse of 1 August 2008, Russ. Geol. Geophys., 2011, vol. 52, no. 3, pp. 343–352. https://doi.org/10.1016/j.rgg.2011.002.007

    Article  Google Scholar 

  22. Lazzús, J.A., Geomagnetic response to the total solar eclipse on 11 July 2010 in Chile, 2022, Geomagn. Aeron. (Engl. Transl.), 2022, vol. 62, no. 5, pp. 652–656. https://doi.org/10.1134/S0016793222050085

  23. Malin, S.R.C., Özcan, O., Tank, S.B., Tuncer, M.K., and Yazıcı-Çakın, O., Geomagnetic signature of the 1999 August 11 total eclipse, Geophys. J. Int., 2000, vol. 140, no. 3, pp. F13–F16. https://doi.org/10.1046/j.1365-246X.2000.00061.x

    Article  Google Scholar 

  24. Meza, A., Bosch, G., Natali, M.P., and Eylenstein, B., Ionospheric and geomagnetic response to the total solar eclipse on 21 August 2017, Adv. Space Res., 2022, vol. 69, no. 1, pp. 16–25. https://doi.org/10.1016/j.asr.2021.07.029

    Article  Google Scholar 

  25. Momani, M.A., Al Smadi, T.A., Al Taweel, F.M., and Ghaidan, K.A., Magnetic field disturbances during the 2003 total solar eclipse over Antarctica as observed by magnetometers, Eur. J. Technol. Adv. Eng. Res., 2011, vol. 2, no. 2, pp. 69–75.

    Google Scholar 

  26. Onovughe, E.V., Geomagnetic diurnal variation during the total solar eclipse of 29 March 2006, Int. J. Astron., 2013, vol. 2, no. 4, pp. 51–55. https://doi.org/10.5923/j.astronomy.20130204.01

    Article  Google Scholar 

  27. Orozco, A.L. and Muniz Barreto, L., Magnetic effect during the total eclipse of July 11, 1991, Geofis. Int., 1993, vol. 32, no. 1, pp. 3–13. https://doi.org/10.22201/igeof.00167169p.1993.32.1.1147

    Article  Google Scholar 

  28. Özcan, O. and Aydoğdu, M., Possible effects of the total solar eclipse of August 11, 1999 on the geomagnetic field variations over Elazig-Turkey, J. Atmos. Sol.-Terr. Phys., 2004, vol. 66, no. 11, pp. 997–1000. https://doi.org/10.1016/j.jastp.2004.03.009

    Article  Google Scholar 

  29. Ruhimat, M., Winarko, A., Nuraeni, F., Bangkit, H., and Aris, M.A., Suwardi, and Sulimin, Effect of March 9, 2016 total solar eclipse on geomagnetic field variation, J. Phys. Conf. Ser., 2016, vol. 771, pp. 012036(1)–012036(4). https://doi.org/10.1088/1742-6596/771/1/012036

  30. Stankov, S.M., Bergeot, N., Berghmans, D., Bolsée, D., Bruyninx, C., Chevalier, J.-M., Clette, F., De Backer, H., De Keyser, J., D’Huys, E., Dominique, M., Lemaire, J.F., Magdalenić, J., Marqué, C., Pereira, et al., Multi-instrument observations of the solar eclipse on 20 March 2015 and its effects on the ionosphere over Belgium and Europe, J. Space Weather Space Clim., 2017, vol. 7, pp. A19(1)–A19(23). https://doi.org/10.1051/swsc/2017017

  31. Střeštík, J., The response of the 11 August 1999 total solar eclipse in the geomagnetic field, Earth Moon Planets, 2001, vol. 85–86, pp. 561–566. https://doi.org/10.1023/A:1017047627850

    Article  Google Scholar 

  32. Vega-Jorquera, P., Lazzús, J.A., Tamblay, L., Palma-Chilla, L., Salfate, I., and Pacheco, R., Geomagnetic field variations during the total solar eclipse of July 2019 in La Serena, Chile, Geomagn. Aeron. (Engl. Transl.), 2021, vol. 61, no. 2, pp. 287–292. https://doi.org/10.1134/S0016793221020171

  33. Zubaidah, T., Kanata, B., Paniran, P., and Wiriasto, G.W., Observation of geomagnetic fields changes related to 9th March 2016 solar eclipse on Lombok Island-Indonesia, in 7th Indonesia Japan Joint Scientific Symposium, 2016, 20–24 November, Chiba, Kanto, Japan. http://www.cr.chiba-u.jp/Documents/symposiums/ symp2016/.

Download references

ACKNOWLEDGMENTS

The authors thank the support of the Direction of Research and Development of the University of La Serena (DIDULS), the Department of Physics of the University of La Serena (DFULS), and the University of La Serena’s Laboratory for Space and Atmospheric Physics (LAFESAT) that enabled the preparation of this paper. Special thanks go to E. Yizengaw, E. Zesta, M. B. Moldwin, and the rest of the SAMBA team for the data, and NASA’s Eclipse Web Site by Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Lazzús.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazzús, J.A. Geomagnetic Effects of the Partial Solar Eclipse of 11 September 2007 in Chile and Antarctica. Geomagn. Aeron. 63, 497–502 (2023). https://doi.org/10.1134/S0016793223600029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223600029

Navigation