Skip to main content
Log in

Additional Stochastic Acceleration of Nonthermal Electrons during Their Interaction with Whistler Turbulence in Flare Loops

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The process of additional acceleration of nonthermal electrons during their stochastic interaction with the turbulence of whistlers propagating along a flare loop is studied. The degree of influence of the effect on the pitch-angle scattering, energy, and spatial distributions of electrons has been estimated. It is shown that at a certain energy density, whistler turbulence can strongly affect not only pitch-angle scattering, but also electron acceleration in a flare loop, which results in a rapid and significant (by orders of magnitude) increase in the concentration of high-energy (E = 100–5000 keV) electrons that is also accompanied by a significant flattening of their energy spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig 4.

Similar content being viewed by others

REFERENCES

  1. Arnold, H., Drake, J.F., Swisdak, M., et al., Electron acceleration during macroscale non-relativistic magnetic reconnection, Phys. Rev. Lett., 2021, vol. 126, no. 13, id 135101.

  2. Avrett, E.H. and Loeser, R., Models of the solar chromosphere and transition region from SUMER and HRTS observations: Formation of the extreme-ultraviolet spectrum of hydrogen, carbon, and oxygen, Astrophys. J. Suppl. Ser., 2008, vol. 175, no. 1, pp. 229–276.

    Article  Google Scholar 

  3. Bespalov, P.A. and Trakhtengerts, V.Yu., On the regimes of turbulent diffusion by pitch-angles in a geomagnetic trap, Fiz. Plazmy, 1979, vol. 5, no. 2, pp. 383–390.

    Google Scholar 

  4. Bespalov, P.A. and Trakhtengerts, V.Yu., Al’fvenovskie mazery (Alfvén Masers), Gor’kii: IPF AN SSSR, 1986.

  5. Charikov, Yu.E., Mel’nikov, V.F., and Kudryavtsev, I.V., Intensity and polarization of the hard X-ray radiation of solar flares at the top and footpoints of a magnetic loop, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 8, pp. 1021–1031.

  6. Filatov, L.V. and Melnikov, V.F., Microwave emission of a flare loop in the presence of whistler turbulence, Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 8, pp. 1137–1145.

  7. Filatov, L.V., Melnikov, V.F., and Gorbikov, S.P., Dynamics of the spatial distribution of electrons and their gyrosynchrotron emission characteristics in a collapsing magnetic trap, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 8, pp. 1007–1012.

  8. Ginzburg, V.L. and Syrovatskii, S.I., Proiskhozhdenie kosmicheskikh luchei (The Origin of Cosmic Rays), Moscow: AN SSSR, 1963.

  9. Hamilton, R.J. and Petrosian, V., Stochastic acceleration of electrons and effects of collisions in solar flares, Astrophys. J., 1992, vol. 398, no. 10, pp. 350–358.

    Article  Google Scholar 

  10. Hamilton, R.J., Lu, E.T., and Petrosian, V., Numerical solution of the time-dependent kinetic equation for electrons in magnetized plasma, Astrophys. J., 1990, vol. 354, no. 1, pp. 726–734.

    Article  Google Scholar 

  11. Huang, G., Melnikov, V.F., Ji, H., and Ning, Z., Solar Flare Loops: Observations and Interpretations, Springer Singapore, 2018.

    Google Scholar 

  12. Kadomtsev, B.B., Plasma turbulence, in Voprosy teorii plazmy (Problems in Plasma Theory), Moscow: Atomizdat, 1964, vol. 4, pp. 188–339.

  13. Kaplan, S.A. and Tsytovich, V.N., Plasma Astrophysics, Oxford: Pergamon, 1973.

    Google Scholar 

  14. Kong, X., Guo, F., Shen, C., et al., The acceleration and confinement of energetic electrons by a termination shock in a magnetic trap: An explanation for nonthermal loop-top sources during solar flares, Astrophys. J. Lett., 2019, vol. 887, no. 8, id L37.

  15. Mal’tseva, O.A. and Chernov, G.P., Kinetic amplification (attenuation) of whistlers in the solar corona, Kinematika Fiz. Nebesnykh Tel, 1989, vol. 5, no. 6, pp. 44–54.

    Google Scholar 

  16. Melnikov, V.F. and Filatov, L.V., Conditions whistler generation nonthermal electrons in flare loop, Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 8, pp. 1126–1131.

  17. Melnikov, V.F. and Filatov, L.V., Nonthermal electron diffusion modes in whistler turbulence in flare loops, Geomagn. Aeron. (Engl. Transl.), 2021, vol. 61, no. 8, pp. 1189–1196.

  18. Melnikov, V.F., Gorbikov, S.P., Reznikova, V.E., and Shibasaki, K., Distribution of relativistic electrons along flaring loops, Bull. Russ. Acad. Sci., 2006, vol. 70, no. 10, pp. 1684–1687.

    Google Scholar 

  19. Melrose, D.B., Resonant scattering of particles and second phase acceleration in the solar corona, Sol. Phys., 1974, vol. 37, no. 4, pp. 353–365.

    Article  Google Scholar 

  20. Melrose, D.B., Plasma Astrophysics, vol. 2, Sydney–New York, 1980.

    Google Scholar 

  21. Miller, J.A., Electron acceleration in solar flares by fast mode waves: Quasi-linear theory and pitch-angle scattering, Astrophys. J., 1997, vol. 491, no. 12, pp. 939–951.

    Article  Google Scholar 

  22. Miller, J.A. and Ramaty, R., Relativistic electron transport and bremsstrahlung production in solar flares, Astrophys. J., 1989, vol. 344, no. 15, pp. 973–990.

    Article  Google Scholar 

  23. Petrosian, V. and Pryadko, J.M., Stochastic acceleration of electrons by plasma waves. III. Waves propagating perpendicular to the magnetic field, Astrophys. J., 1999, vol. 515, pp. 873–881.

    Article  Google Scholar 

  24. Somov, B.V. and Kosugi, T., Collisionless reconnection and high-energy particle acceleration in solar flares, Astrophys. J., 1997, vol. 485, no. 2, pp. 859–868.

    Article  Google Scholar 

  25. Stepanov, A.V. and Tsap, Y.T., Electron–whistler interaction in coronal loops and radiation signatures, Sol. Phys., 2002, vol. 211, pp. 135–154.

    Article  Google Scholar 

  26. Syrovatskii, S.I., Key issues of the flare theory, Izv. Akad. Nauk SSSR: Ser. Fiz., 1979, vol. 43, no. 4, pp. 695–707.

    Google Scholar 

  27. Tsytovich, V.N., Teoriya turbulentnoi plazmy (Theory of Turbulent Plasma), Moscow: Atomizdat, 1971.

  28. Vedenov, A.A., Velikhov, E.P., and Sagdeev, R.Z., Quasi-linear theory of plasma, Yad. Sint., 1962, vol. 2, no. 2, pp. 465–475.

    Google Scholar 

  29. Wentzel, D.G., Condition for “storage” of energetic particles in the solar corona, Astrophys. J., 1976, vol. 208, pp. 595–608.

    Article  Google Scholar 

  30. Zaitsev, V.V. and Stepanov, A.V., Coronal magnetic arcs, Phys.-Usp., 2008, vol. 51, no. 11, pp. 1123–1160.

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, grant no. 22-12-00308 (VFM) and the Russian Foundation for Basic Research, grant no. 20-52-26 006 (LVF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Filatov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filatov, L.V., Melnikov, V.F. Additional Stochastic Acceleration of Nonthermal Electrons during Their Interaction with Whistler Turbulence in Flare Loops. Geomagn. Aeron. 62, 1059–1065 (2022). https://doi.org/10.1134/S0016793222080102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793222080102

Navigation