Skip to main content
Log in

A Short-Term Forecast for Parameters of the F2 Layer

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Predictors of magnetoionospheric disturbances occurring in phenomena in the Sun and in the solar wind and allowing one to forecast the probability of the occurrence of magnetoionospheric disturbances are described. In the study of the relation between ionospheric and magnetic storms, an empirical dependence of the beginning, intensity, and duration of ionospheric disturbances on magnetic ones is established. Methods of global representation of spatiotemporal variations in parameters of the F2 layer during disturbances with the use of both empirical and physical models are considered. The possibility of using a simplified single-ion model consisting of a system of two differential equations for NmF2 and hmF2 in short-term forecasting of maximum parameters of the F2 layer of the middle-latitude ionosphere is demonstrated. The input parameters of the model are the coordinates, solar and magnetic activity, as well as prediction of the beginning, type, and intensity of the disturbance. Correction in the forecast is performed by the drift velocity and recombination coefficient according to current observations. The materials accumulated by this model are compared with forecasts using the empirical model constructed in the Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, Russian Academy of Sciences, by identifying regular disturbed variations. It is shown that the accuracies of these models are comparable. Based on statistical analysis of histograms of δ foF2, it is shown that the distribution law for the population of δ foF2 during disturbances is far from normal. A method of interpreting experimental probability density functions by the model with kurtosis and skewness constructed based on the Poisson random process both for data with an hourly resolution and by more frequent 5-min observations is proposed. The main stages of the further development of short-term ionospheric forecasting based on numerical theoretical models of the ionosphere are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Akasofu, S.I., Working group report of geomagnetic storm, in Solar–Terrestrial Predictions Proceedings, Boulder, 1980, vol. 4, pp. A91–A114.

  2. Akin’yan, S.T. and Chertok, I.M., Determination of the PCA-type absorption from integral parameters of solar microwave radio bursts, Geomagn. Aeron., 1980, vol. 20, no. 2, pp. 192–196.

    Google Scholar 

  3. Aksenov, O.Yu., Bekker, S.Z., Dyuzheva, M.M., Kozlov, S.I., Lyakhov, A.N., and Yakubovskii, S.V., Justification of the development and application of probabilistic–statistical models of the ionosphere for radar facilities of space missile defense, in Tr. V Vserossiiskoi nauchno–tekhnicheskoi konferentsii “RTI sistemy VKO-2017" (Proceedings of the V All-Russian Scientific and Technical Conference "RTI Systems of Space Missile Defense-2017"), Moscow, 2017, p. 18.

  4. Anufrieva, T.A., Kuleshova, V.P., and Sergeenko, N.P., Calculation of the characteristics of HF radio waves during magnetospheric disturbances, Tekh. Sredstv Svyazi. Ser. Sist. Svyazi (SS), 1987, no. 6, pp. 14–23.

  5. Barabashov, B.G. and Mal’tseva, O.A., Possibilities of real-time description of the ionosphere and its forecasting, Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., Estestv. Nauki, 2003, no. 2, pp. 33–38.

  6. Bekker, S.Z., Probabilistic–statistical models of the lower undisturbed midlatitude ionosphere verified according to ground-based radiophysical measurements, Cand. Sci. (Phys.–Math.) Dissertation, Moscow, 2018.

  7. Bekker, S.Z., Kozlov, S.I., and Lyakhov, A.N., Ionospheric modeling for calculating the propagation of radio waves in the treatment of applied problems, Vopr. Oboronnoi Tekh., 2013, vol. 16, nos. 3–4, pp. 85–88.

    Google Scholar 

  8. Besprozvannaya, A.S., Krupitskaya, T.M., Makarova, L.N., et al., Calculation of the spatiotemporal distribution of the maximum ionization of the polar F2-layer, Geomagn. Aeron., 1982, vol. 22, no. 3, pp. 383–391.

    Google Scholar 

  9. Besprozvannaya, A.S., Shirochkov, A.V., and Shchuka, T.I., Empirical models of electron density in the polar ionosphere under different heliogeophysical conditions, in Prognozirovanie ionosfery i uslovii rasprostraneniya radiovoln (Prediction of the Ionosphere and Radiowave Propagation Conditions), Moscow: Nauka, 1985, pp. 29–39.

  10. Bilitza, D., Ionospheric models for radio propagation studies, Review of Radio Science: 1999–2002, Stone, W.R., Ed., IEEE and Wiley, 2002, pp. 625–679.

    Google Scholar 

  11. Danilov, A.D. and Morozova, L.D., Ionospheric storms in the F2-region: Morphology and physics (review), Geomagn. Aeron., 1985, vol. 25, no. 5, pp. 705–721.

    Google Scholar 

  12. Dvinskikh, N.I. and Naidenova, N.Ya., δfoF2 prediction method adapted to specific geophysical conditions, in Prognozirovanie ionosfery i uslovii rasprostraneniya radiovoln (Prediction of the Ionosphere and Radiowave Propagation Conditions), Moscow: Nauka, 1985, pp. 54–58.

  13. Evans, J.V., The causes of short-time increases of the F-layer at mid latitude, J. Atmos. Terr. Phys., 1973, vol. 35, no. 4, pp. 593–616.

    Article  Google Scholar 

  14. Ferguson, J.A., Ionospheric model validation at VLF and LF, Radio Sci., 1995, vol. 30, no. 3, pp. 775–782.

    Article  Google Scholar 

  15. Frolov, S.G., Diagnostics and forecast of geoeffective shock waves from solar flares, Dokl. Akad. Nauk SSSR, 1978, vol. 243, no. 3, pp. 615–618.

    Google Scholar 

  16. Ginzburg, E.I. and Gulyaev, V.T., Nonstationary one-dimensional semi-empirical model of the ionospheric F2-region, in Issledovaniya nizhnei ionosfery (Studies of the Lower Ionosphere), Novosibirsk, 1982, pp. 97–120.

  17. Ishkova, L.A., Kuleshova, V.P., Nosova, G.N., Sergeenko, N.P., and Chernyshov, O.V., Prediction of radiowave propagation conditions during ionospheric storms, Geomagn. Aeron., 1993, vol. 33, no. 6, pp.155–159.

    Google Scholar 

  18. Ivanov-Kholodnyi, G.S. and Mikhailov, A.V., Prognozirovanie sostoyaniya ionosfery (Prediction of the Ionospheric State), Leningrad: Gidrometeoizdat, 1980.

  19. Jaccia, L.G., Thermospheric temperature, density and composition, Smithsonian Astrophys. Obs. Special Rep., 1977, no. 375, pp. 1–106.

  20. Joselyn, I.A. and McIntosh, P.S., Dissappearing solar filaments: A useful predictor of geomagnetic activity, J. Geophys. Res., 1981, vol. 86, no. 6, pp. 4555–4564.

    Article  Google Scholar 

  21. Koen, M.A. and Sidorov, I.M., Modeling of the equatorial ionosphere, in Modelirovanie protsessov gidrosfery, atmosfery i nizhnego kosmosa (Modeling of Processes in the Hydrosphere, Atmosphere, and Lower Space), Novosibirsk: Nauka, 1985, pp. 147–162.

  22. Kohnlein, W., A model of thermospheric temperature and composition, Planet. Space Sci., 1980, vol. 28, no. 3, pp. 225–243.

    Article  Google Scholar 

  23. Kolesnik, A.G. and Chernyshov, V.I., Nonstationary self-similar model of the midlatitude ionosphere at heights from 120 to 500 km, Geomagn. Aeron., 1981, vol. 21, no. 2, pp. 245–249.

    Google Scholar 

  24. Kozlov, S.I., Lyakhov, A.N., and Bekker, S.Z., Key principles of constructing probabilistic statistical ionosphere models for the radiowave propagation problems, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 6, pp. 750–762.

  25. Kuleshova, V.P., Lavrova, E.V., Ponomareva, L.I., and Sergeenko, N.P., Prediction of F-region height profiles of electron concentration for ionospheric disturbances on the basis of empirical models, in Solar–Terrestrial Predictions. Proc. Workshop at Meudon, France, June 18–22, 1984, Boulder, Colo., 1986, pp. 515–518.

  26. Kuleshova, V.P., Lavrova, E.V., Ponomareva, L.I., and Sergeenko, N.P., Prediction of F-region height profiles of electron concentration for ionospheric disturbances on the basis of empirical models, in Artificial Satellites – Space Physics, Warszawa, 1987, vol. 16, p. 333.

  27. Lavrova, E.V., Ponomareva, L.I., and Sergeenko, N.P., About the possibility of the planetary prediction of the F2-region height profiles of electron concentration for ionospheric disturbances, UAG Report WCD-A, Washington, DC, 1985.

  28. Marin, D., Miro, G., and Mikhailov, A.V., A method for foF2 short-term prediction, Phys. Chem. Earth C, 2000, vol. 25, pp. 327–332.

    Google Scholar 

  29. McNamara, L.F., Geomagnetic effects of solar flares observed during 1968–1978, Ionospheric Prediction Service, Ser. R. Rep. IPS-R35, 1980.

  30. Mendillo, M. and Klobuchar, J.A., A morphology-based prediction scheme for the coupled latitudinal and local-time development of F-region, in Solar–Terrestrial Predictions Proceeding, Boulder, 1980, vol. 4, pp. 15–26.

  31. Metodika postroeniya lokal’nykh ionosfernykh modelei na seti ionosfernykh nablyudatel’nykh punktov Rosgidrometa (Methodology for Building Local Ionospheric Models on the Network of Ionospheric Observation Stations of Roshydromet), Moscow: FGBU IPG, 2020.

  32. Middleton, D., Non-Gaussian noise models in signal processing for telecommunications: New methods and results for class A and class B noise models, IEEE Trans. Inf. Theory, 1999, vol. 45, no. 4, pp. 1129–1140.

    Article  Google Scholar 

  33. Mikhailov, A.V., Depuev, V.H., and Depueva, A.H., Short-term foF2 forecast: Present-day state of art, in space weather: Research towards applications in Europe, Astrophys. Space Sci., 2007, vol. 344, pp. 169–184.

    Article  Google Scholar 

  34. Namgaladze, A.A., Numerical simulation of midlatitude ionospheric disturbances, in Diagnostika i modelirovanie ionosfernykh vozmushchenii (Diagnostics and Simulation of Ionospheric Disturbances), Moscow: Nauka, 1978, pp. 57–68.

  35. Namgaladze, AA. and Zakharov, L.P., Influence of disturbances in the composition of neutral atmosphere and thermospheric winds on the ionospheric F-region, in Issledovanie ionosfernoi dinamiki (Study of the Ionospheric Dynamics), Moscow: IZMIRAN, 1979, pp. 84–95.

  36. Namgaladze, A.A., Latishev, K.S., Korenkov, Yu.N., and Zakharov, L.P., A dynamical model of the midlatitude ionosphere for a height range from 100 to 1000 km, Acta Geophys., 1977, vol. 25, no. 3, pp. 173–182.

    Google Scholar 

  37. Osipov, N.K., Bezmaternykh, N.F., Maksimova, N.M., et al., System of prognostic models of the polar convecting ionosphere, Ionos. Issled., 1983, no. 37, pp. 36–60.

  38. Picone, J.M., Hedin, A.E., Drob, D.P., and Aikin, A.C., NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 2002, vol. 107, no. A12, pp. 1–16. https://doi.org/10.1029/2002JA009430

    Article  Google Scholar 

  39. Prölls, G.W., Magnetic storm-associated perturbations of the upper atmosphere: Recent results obtained by satellite-borne gas analyzers, Rev. Geophys. Space Phys., 1980, vol. 18, no. 1, pp. 183–202.

    Article  Google Scholar 

  40. Pudovkin, M.I., Kozelov, V.L., Lazutin, L.L., Troshichev, O.A., and Chertkov, A.D., Fizicheskie osnovy prognozirovaniya magnitosfernykh vozmushchenii (Physical Foundations of the Prediction of Magnetospheric Disturbances), Leningrad: Nauka, 1977.

  41. Pudovkin, M.I., Shukhtina, M.A., Ponyavin, D.I., and Zaitseva, S.A., Effect of solar wind parameters on geomagnetic activity, Geomagn. Issled., 1980, no. 27, pp. 69–77.

  42. Rishbeth, H. and Garriot, O.K., Introduction to Ionospheric Physics, New York: Academic, 1969; Leningrad: Gidrometeoizdat, 1975.

  43. Rosenberg, R.L., A practical method of predicting geomagnetic storms by using precursory enhancements of solar wind density, J. Geophys. Res., 1982, vol. 87, no. A4, pp. 2563–2568.

    Article  Google Scholar 

  44. Saenko, Yu.S., Namgaladze, A.N., and Sergeenko, N.P., Dynamical relationships between aeronomic and ionospheric parameters in the F2-layer maximum, in Prognozirovanie ionosfery i uslovii rasprostraneniya radiovoln (Prediction of the Ionosphere and Radiowave Propagation Conditions), Moscow: Nauka, 1985, pp. 123–126.

  45. Saenko, Yu.S., Namgaladze, A.N., and Sergeenko, N.P., Dynamical model of the behavior of ionospheric parameters in the maximum of the F2-layer, Preprint of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, Moscow, 1988, no. 8 (541).

  46. Sergeenko, N.P., Statistical description of non-Gaussian samples in the F2 layer of the ionosphere during heliogeophysical disturbances, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 6, pp. 761–768.

  47. Sergeenko, N.P. and Depueva, A.Kh., Planetary variations in the height of the F2-layer maximum during ionospheric disturbances, Geomagn. Aeron. (Engl. Transl.), 2021, vol. 61, no. 3, pp. 349–358.

  48. Sergeenko, N.P. and Kuleshova, V.P., The forecasting storm from ground-based recording of the magnetic field, Solar–Terrestrial Predictions Proceeding of Workshop 16–20 October, 1989, Leura, Australia, Boulder, Colo., 1990, vol. 2, pp. 367–370.

  49. Shelomentsev, V.V., Mishin, V.M., and Sergeeva, L.P., On the possibility of storm prediction on the basis of geomagnetic diagnostics of solar wind concentration bursts, in Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa (Studies on Geomagnetism, Aeronomy, and Solae Physics), Moscow: Nauka, 1982, vol. 58, pp. 15–25.

  50. Sirotkin, V.A., Klimenko, V.V., and Namgaladze, A.A., A numerical model of the equatorial ionosphere, in Issledovaniya ionosfernoi dinamiki (Studies on Ionospheric Dynamics), Moscow: IZMIRAN, pp. 58–68. 1979.

  51. Skirgiello, M., Solar wind velocity influence on shock wave propagation time, Artif. Satell., 1980, vol. 15, no. 3, pp. 20–26.

    Google Scholar 

  52. Zevakina, R.A., Prediction of ionospheric disturbances, in Prognozirovanie ionosfernykh, magnitosfernykh vozmushchenii i solnechnoi aktivnosti (Prediction of Ionospheric and Magnetospheric Disturbances and Solar Activity), Moscow: Nauka, 1987, pp. 110–122.

  53. Zevakina, P.A., Zhulina, E.M., Nosova, G.N., and Sergeenko, N.P., Rukovodstvo po kratkosrochnomu prognozirovaniyu ionosfery. Materialy mirovogo tsentra dannykh B (Guide to Short-Term Forecast of the Ionosphere. Transactions of the World Data Center B), Moscow: MGK pri Prez. AN SSSR, 1990.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Sergeenko.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergeenko, N.P. A Short-Term Forecast for Parameters of the F2 Layer. Geomagn. Aeron. 62, 724–736 (2022). https://doi.org/10.1134/S0016793222060135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793222060135

Navigation