Skip to main content
Log in

Wind Effects in the Thermosphere during the Propagation of Atmospheric Waves Generated by a Tropospheric Heat Source

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The results of a numerical study of the processes of propagation into the thermosphere of internal gravity waves excited by heat sources in the troposphere are presented. The results of numerical experiments have shown that thermospheric disturbances from such sources arise ~30 min after the onset of their action. The reason for the appearance of a fast reaction of the thermosphere is the infrasonic waves excited during the generation of internal gravity waves. It is shown that the thermospheric wind significantly affects the spatiotemporal structure of wave disturbances in the upper atmosphere. This influence manifests itself in an increase in the amplitudes and a decrease in the spatial scales of waves that propagate against the thermospheric wind. For waves that propagate in the direction of the thermospheric wind, a decrease in amplitudes and an increase in spatial scales are noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Akhmedov, R.R. and Kunitsyn, V.E., Simulation of the ionospheric disturbances caused by earthquakes and explosions, Geomagn. Aeron. (Engl. Transl.), 2004, vol. 44, no. 1, pp. 95–101.

  2. Blanc, E. and Farges, T., Le Pichon, A., et al., Ten year observations of gravity waves from thunderstorms in western Africa, J. Geophys. Res.: Atmos., 2014, vol. 119, pp. 6409–6418.

    Article  Google Scholar 

  3. Borchevkina, O.P. and Karpov, I.V., Ionospheric irregularities in periods of meteorological disturbances, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 5, pp. 624–629.

  4. Borchevkina, O., Karpov, I., and Karpov, M., Meteorological storm influence on the ionosphere parameters, Atmosphere, 2020, vol. 11, no. 9, id 1017. https://doi.org/10.3390/atmos11091017

  5. Boška, J. and Šauli, P., Observations of gravity waves of meteorological origin in the F-region ionosphere, Phys. Chem. Earth, 2001, vol. 26, pp. 425–428. https://doi.org/10.1016/S1464-1917(01)00024-1

    Article  Google Scholar 

  6. Dong, W., Hickey, M.P., and Zhang, S., A numerical study of gravity waves propagation characteristics in the mesospheric Doppler duct, J. Geophys. Res.: Atmos., 2021, vol. 126, e2021-JD034680. https://doi.org/10.1029/2021JD034680

    Article  Google Scholar 

  7. Drob, D.P., Emmert, J.T., Meriwether, J.W., et al., An update to the horizontal wind model (HWM): The quiet time thermosphere, Earth Space Sci., 2015, vol. 2, pp. 301–319.

    Article  Google Scholar 

  8. Drobzheva, Ya.V. and Krasnov, V.M., The acoustic field in the atmosphere and ionosphere caused by a point explosion on the ground, J. Atmos. Sol.-Terr. Phys., 2003, vol. 65, no. 3, pp. 369–377.

    Article  Google Scholar 

  9. Fritts, D.C., A review of gravity wave saturation processes, effects, and variability in the middle atmosphere, Pure Appl. Geophys., 1989, vol. 130, pp. 343–371.

    Article  Google Scholar 

  10. Fritts, D.C. and Alexander, M.J., Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 2003, vol. 41, no. 1, pp. 1–64. https://doi.org/10.1029/2001RG000106

    Article  Google Scholar 

  11. Gavrilov, N.M. and Koval, A.V., Parameterization of mesoscale stationary orographic wave forcing for use in numerical models of atmospheric dynamics, Izv., Atmos. Ocean. Phys., 2013, vol. 49, no. 3, pp. 244–251.

    Article  Google Scholar 

  12. Hickey, M.P., Schubert, G., and Walterscheid, R.L., Acoustic wave heating of the thermosphere, J. Geophys. Res.: Space, 2001, vol. 106, no. A10, pp. 21543–21548. https://doi.org/10.1029/2001JA000036

    Article  Google Scholar 

  13. Holton, J.R., An Introduction to Dynamic Meteorology, London: Elsevier, 2004.

    Google Scholar 

  14. Karpov, I.V. and Kshevetskii, S.P., Formation of large-scale disturbances in the upper atmosphere caused by acoustic gravity wave sources on the Earth’s surface, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 4, pp. 513–522.

  15. Karpov, I. and Kshevetskii, S., Numerical study of heating the upper atmosphere by acoustic-gravity waves from a local source on the Earth’s surface and influence of this heating on the wave propagation conditions, J. Atmos. Sol.-Terr. Phys., 2017, vol. 164, pp. 89–96.

    Article  Google Scholar 

  16. Kshevetskii, S.P., Analytical and numerical investigation of nonlinear internal gravity waves, Nonlinear Proc. Geophys., 2001a, vol. 8, pp. 37–53.

    Article  Google Scholar 

  17. Kshevetskii, S.P., Modeling of propagation of internal gravity waves in gases, Comput. Math. Math. Phys., 2001b, vol. 41, no. 2, pp. 273–288.

    Google Scholar 

  18. Kshevetskii, S.P., Numerical simulation of nonlinear internal gravity waves, Comput. Math. Math. Phys., 2001c, vol. 41, pp. 1777–1791.

    Google Scholar 

  19. Kshevetskii, S.P. and Gavrilov, N.M., Vertical propagation of nonlinear gravity waves and their breaking in the atmosphere, Geomagn. Aeron. (Engl. Transl.), 2003, vol. 43, no. 1, pp. 69–76.

  20. Kshevetskii, S.P. and Kulichkov, S.N., Effects that internal gravity waves from convective clouds have on atmospheric pressure and spatial temperature-disturbance distribution, Izv., Atmos. Ocean. Phys., 2015, vol. 51, no. 1, pp. 42–48.

    Article  Google Scholar 

  21. Kurdyaeva, Y. and Kshevetskii, S., Study of propagation of acoustic–gravity waves generated by tropospheric heat source, in EGU General Assembly, 2021, EGU21-2755. https://doi.org/10.5194/egusphere-egu21-2755.

  22. Li, W., Yue, J., Yang, Y., et al., Analysis of ionospheric disturbances associated with powerful cyclones in East Asia and North America, J. Atmos. Sol.-Terr. Phys., 2017, vol. 161, pp. 43–54. https://doi.org/10.1016/j.jastp.2017.06.012

    Article  Google Scholar 

  23. Lindzen, R.S., Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res., 1981, vol. 86, pp. 9707–9714.

    Article  Google Scholar 

  24. Martinis, C.R. and Manzano, J.R., The influence of active meteorological systems on the ionospheric F-region, Ann. Geophys., 1999, vol. 42, no. 1. https://doi.org/10.4401/ag-3708

  25. Medvedev, A.V., Ratovsky, K.G., Tolstikov, M.V., et al., Relation of internal gravity wave anisotropy with neutral wind characteristics in the upper atmosphere, J. Geophys. Res.: Space, 2017, vol. 122, no. 7, 7567.

    Article  Google Scholar 

  26. Picone, J.M., Hedin, A.E., Drob, D.P., et al., NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 2002, vol. 107, no. A12, 1468. https://doi.org/10.1029/2002JA009430

    Article  Google Scholar 

  27. Polyakova, A.S. and Perevalova, N.P., Comparative analysis of TEC disturbances over tropical cyclone zones in the north-west Pacific Ocean, Adv. Space Res., vol. 52, no. 8, pp. 1416–1426. https://doi.org/10.1016/j.asr.2013.07.029

  28. Waldock, J.A. and Jones, T.B., HF Doppler observations of medium-scale travelling ionospheric disturbances at mid-latitudes, J. Atmos. Sol.-Terr. Phys., 1986, vol. 48, no. 3, pp. 245–260.

    Article  Google Scholar 

Download references

Funding

This work was supported by the scholarship of the President of the Russian Federation for young scientists and graduate students SP-753.2021.3 (Yu.A. Kurdyaeva: Numerical calculations, analysis and interpretation of results), grant no. 18-35-00121 from the Russian Foundation for Basic Research and the Kaliningrad Region (Karpov M.I.: Analysis and interpretation of the results) and Russian Science Foundation grant no. 21-17-00208 (Borchevkina O.P.: Preparing data for modeling).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Kurdyaeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurdyaeva, Y.A., Kshevetsky, S.P., Borchevkina, O.P. et al. Wind Effects in the Thermosphere during the Propagation of Atmospheric Waves Generated by a Tropospheric Heat Source. Geomagn. Aeron. 62, 453–459 (2022). https://doi.org/10.1134/S0016793222040119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793222040119

Navigation