Skip to main content
Log in

Latitudinal Dependence of Ionospheric Responses to Some Geomagnetic Storms during Low Solar Activity

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The Latitudinal dependence in the response of the Ionospheric F2-layer electron density (NmF2) and peak height (hmF2) to three geomagnetic storms of May and August 2010 has been examined. The data-sets used for the study were obtained from Ilorin, Nigeria (1.87° S/76.67° E), San Vito, Italy (34.68° N/90.38° E), Hermanus, South Africa (42.34° S/82.15° E), and Pruhonice, Czech Republic (45.66° N/90.38° E) geomagnetic coordinates. The quiet time result shows that the rise in NmF2 began earlier at San Vito, followed by Pruhonice. The rate of ionization was observed to be highest in Ilorin, while, the rate of decay in NmF2 is faster at Hermanus. For disturbed NmF2 condition, remarkable similarities in the NmF2 responses during geomagnetic storms were recorded from Hermanus in the mid-latitude and Ilorin, an equatorial station. NmF2 enhancements (>6 hours) that is consistent with the increase in hmF2 were observed at all the mid-latitude stations during the main phase of the 02 May, 2010 storm, without any noticeable change over ILN. Similarly, 12 hours of positive phase was observed at ILN and HMN, with 30 hours of NmF2 depletions at PRN and SVT during the recovery phase. ILN is in the equatorial Trough, so most of the NmF2 produced at this region is lifted to the higher latitudes by the fountain effect during the main phase. The suppression of the zonal electric field at ILN is responsible for the NmF2 enhancement during the recovery phase, while the mid-latitude responses have been attributed to the effect of the thermospheric winds and neutral composition changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 4.
Fig. 4.
Fig. 5.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Adebesin, B.O., F2 region response to the magnetic storm of January 10, 1976 at American Sector, Afr. Phys. Rev., 2008, vol. 2, pp. 136–142.

    Google Scholar 

  2. Adebesin, B.O. and Chukwuma, V.U., On the variation between D st and IMF B z during ‘intense’ and ‘very intense’ geomagnetic storms, Acta Geod. Geophys. Hung., 2008, vol. 43, pp. 1–15. https://doi.org/10.1556/AGeod.43.2008.1.1

    Article  Google Scholar 

  3. Adebiyi, S.J., Adeniyi, J.O., Adimula, I.A., Joshua, B., and Gwani, M., Effect of the geomagnetic storm of April 5–7, 2010, on the F2-layer of the ionosphere of Ilorin, Nigeria, World J. Eng. Pure. Appl. Sci., 2012, vol. 2, no. 2, pp. 56–62.

  4. Adebiyi, S.J., Adimula, I.A., Oladipo, O.A., Joshua, B.W., Adebesin, B.O., and Ikubanni, S.O., Ionospheric response to magnetic activity at low and mid-latitude stations, Acta Geophys., 2014, vol. 62, no. 4, pp. 973–986. https://doi.org/10.2478/s11600-014-0205-x

    Article  Google Scholar 

  5. Adekoya, B.J., Chukwuma, V.U., Bakare, N.O., and David, T.W., On the effect of geomagnetic storms and pre-storm phenomena on low and middle latitude ionospheric F2, Astrophys. Space Sci., 2012, vol. 340, no. 2, pp. 217–235. https://doi.org/10.1007/s10509-012-1082-x

    Article  Google Scholar 

  6. Adeniyi, J.O., Magnetic storm effects on the morphology of the equatorial F2-layer, J. Atmos. Terr. Phys., 1986, vol. 48, no. 8, pp. 695–702.

    Article  Google Scholar 

  7. Adewale, A.O., Oyeyemi, E.O., Adeloye, A.B., Ngwira, C.M., and Athieno, R., Response of equatorial F region to different geomagnetic storms observed by GPS in the African Sector, J. Geophys. Res.: Space Phys., 2011, vol. 116, no. A12. https//doi.org/10.1029/2011ja016998

  8. Akala, A.O., Rabiu, A.B., Somoye, E.O., Oyeyemi, E.O., and Adeloye, A.B., The response of African equatorial GPS-TEC to intense geomagnetic storms during the ascending phase of solar cycle 24, J. Atmos. Sol. Terr. Phys., 2013, vol. 98, pp. 50–62. https://doi.org/10.1016/j.jastp.2013.02.006

    Article  Google Scholar 

  9. Alagbe, G.A., Geomagnetic storm effects on F2 layer peak electron density and other profile parameters at high solar activity at an equatorial station, J. Phys. Sci. Innovation, 2012, vol. 4, pp. 5–12.

    Google Scholar 

  10. Astafyeva, E., Zakharenkova, I., and Forster, M., Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview, J. Geophys. Res.: Space Phys., 2015, vol. 120, pp. 9023–9037. https://doi.org/10.1002/2015JA021629

    Article  Google Scholar 

  11. Bagiya, M.S., Joshi, H.P., Iyer, K.N., Aggarwal, M., Ravindran, S., and Pathan, M., TEC variations during low solar activity period (2005–2007) near the equatorial ionospheric anomaly crest region in India, Ann. Geophys., 2009, pp. 1047–1057. https://doi.org/10.5194/angeo-27-1047-2009

  12. Baishev, D.G., Moiseyev, A.V., Boroyev, R.N., Kobyakova, S.E., Mandrikova, O.V., Solovev, I.S., Khomutov, S.Yu., Polozov, Yu.A., Yoshikawa, A., and Yumoto, K., Magnetic and ionospheric observations in the Far Eastern region of Russia during the magnetic storm of 5 April 2010, Sun Geosphere, 2015, vol. 10, no. 2, pp. 133–140.

    Google Scholar 

  13. Blanc, M. and Richmond, A.D., The ionospheric disturbance dynamo, J. Geophys. Res., 1980, vol. 85, pp. 1669–1686.

    Article  Google Scholar 

  14. Buonsanto, M.J., Ionospheric storms—a review, Space Sci. Rev., 1999, vol. 88, pp. 563–601.

    Article  Google Scholar 

  15. Buresova, D. and Laštovička, J., Pre-storm enhancements of foF2 above Europe, Adv. Space Res., 2007, vol. 39, pp. 1298–1303.

    Article  Google Scholar 

  16. Burns, G., Solomon, S.C., Wang, W., and Killeen, T.L., The ionospheric and thermospheric response to CMEs: Challenges and successes, J. Atmos. Sol. Terr. Phys., 2007, vol. 68, nos. 1–2, pp. 77–85.

    Article  Google Scholar 

  17. Chukwuma, V.U., On ionospheric phenomena during pre-storm and main phase of a very intense geomagnetic storm, Acta Geophys., 2010, vol. 58, no. 6, pp. 1164–1192. https://doi.org/10.2478/s11600-010-0008-7

    Article  Google Scholar 

  18. Daglis, I.A., The role of magnetosphere–ionosphere coupling in magnetic storm dynamics, in Magnetic Storms, Tsurutani, B.T., Gonzalez, W.D., Kamide, Y., and Arballo, J.K., Eds., Washington, D.C.: Am. Geophys. Union, 1997, vol. 98, pp. 107–116.

    Google Scholar 

  19. Danilov, A., Ionospheric F2-region response to geomagnetic disturbances, Adv. Space Res., 2013, vol. 52, pp. 343–366. https://doi.org/10.1016/j.asr.2013.04.019

    Article  Google Scholar 

  20. Danilov, A.D. and Belik, L.D., Thermospheric composition and the positive phase of an ionospheric storm, Adv. Space Res., 1992, vol. 12, no. 10, pp. 250–260.

    Article  Google Scholar 

  21. Danilov, A.D. and Laštovička, J., Effects of geomagnetic storms on the ionosphere and atmosphere, Int. J. Geomagn. Aeron., 2001, vol. 2, pp. 209–224.

    Google Scholar 

  22. Danilov, A.D., Belik, L.D., and Mirmovich, E.G., On a possible nature of the positive phase of ionospheric storms, Geomagn. Aeron., 1985, vol. 25, pp. 768–772.

    Google Scholar 

  23. Essex, E.A., Mendillo, M., Schodel, J.P., Klobuchar, J.A., da Rossa, A.V., Yeh, K.C., Fritz, F.H., Hibbered, R.B., Kersley, L., Koster, J.R., Matsoukas, D.A., Nakata, Y., and Roelofs, T.H., A global response of the total electron content of the ionosphere to the magnetic storm of 17 and 18 June 1972, J. Atmos. Terr. Phys., 1981, vol. 43, pp. 293–306.

    Article  Google Scholar 

  24. Fejer, B.G., Low latitude electrodynamics plasma drifts: A review, J. Atmos. Terr. Phys., 1991, vol. 53, pp. 677–693. https://doi.org/10.1016/0021-9169(91)90121-M

    Article  Google Scholar 

  25. Fejer, B.G. and Scherlies, L., Mid- and low-latitude prompt-penetration ionospheric zonal plasma drifts, Geophys. Res. Lett., 1998, vol. 25, no. 16, pp. 3071–3074.

    Article  Google Scholar 

  26. Fejer, B.G., Larsen, M.F., and Farley, D.T., Equatorial disturbance dynamo electric fields, Geophys. Res. Lett., 1983, vol. 10, pp. 537–540, https://doi.org/10.1029/GL010i007p00537

    Article  Google Scholar 

  27. Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., and Vasyliunas, V.M., What is a geomagnetic storm? J. Geophys. Res., 1994, vol. 99, pp. 5771–5792.

    Article  Google Scholar 

  28. Gostling, J.T., McComas, D.J., Phillips, J.L., and Bame, S.J., Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections, J. Geophys. Res., 1991, vol. 96, pp. 7831–7839.

    Article  Google Scholar 

  29. Habarulema, J.B., Lee-Anne, M., Deia, B., Youngliang, Z., Gopi, S., Chigomezyo, N., Jaroslav, C., and Ben, O., A comparative study of TEC response for the African equatorial and mid-latitudes during storm conditions, J. Atmos. Sol. Terr. Phys., 2013, vol. 102, pp. 105–114. https://doi.org/10.1016/jastp.2013.05.008

    Article  Google Scholar 

  30. Joshua, B., Adeniyi, J.O., Adimula, I.A., Abbas, M., and Adebiyi, S.J., The effect of magnetic storm of May 2010, on the F2-layer over the Ilorin ionosphere, World J. Young Res., 2011, vol. 1, no. 5, pp. 71–78.

    Google Scholar 

  31. Joshua, B., Adebiyi, S.J., Moses, A.O., Abbas, M., Gwani, M., and Abubakar, A., Magnetic storm effects on the ionospheric F2-layer over Czech Republic, Int. J. Emerging Technol. Adv. Eng., 2013, vol. 3, no. 1, pp. 1–8. https://ijetae.com.

    Google Scholar 

  32. Joshua, B.W., Adeniyi, J.O., Adimula, I.A., Oladipo, O.A., Olawepo, O.A., and Adebiyi, S.J., The response of the ionosphere over Ilorin to some geomagnetic storms, Adv. Space Res., 2014a, vol. 54, no. 11, pp. 2224–2235. https://doi.org/10.1016/j.asr.2014.08.027

    Article  Google Scholar 

  33. Joshua, B.W., Adeniyi, J.O., Adimula, I.A., Oladipo, O.A., Olawepo, O.A., and Adebiyi, S.J., Ionospheric response to the storm-time disturbance of 29 May, 2010, Adv. Space Res., 2014b, vol. 53, no. 2, pp. 219–225. https://doi.org/10.1016/j.asr.2013.11.003

    Article  Google Scholar 

  34. Joshua, B.W., Adeniyi, J.O., Oladipo, O.A., Doherty, P.H., Adimula, I.A., Olawepo, O.A., and Adebiyi, S.J., Simultaneous response of NmF2 and GPS-TEC to storm events at Ilorin, Adv. Space Res., 2018, vol. 61, no. 12, pp. 2904–2913. https://doi.org/10.1016/j.asr.2018.03.031

    Article  Google Scholar 

  35. Kamide, Y., Baumjohann, W., Daglis, I.A., Gonzalez, W.D., Grande, M., Joselyn, J.A., McPherron, R.L., Philips, J.L., Reeves, E.G.D., Rostoker, G., Sharma, A.S., Singer, H.J., Tsurutani, B.T., and Vasyliunas, V.M., Current understanding of magnetic storms: Storm-substorm relationships, J. Geophys. Res., 1998, vol. 103, no. A8, pp. 17705–17728.

    Article  Google Scholar 

  36. Kane, R.P., How good is the relationship of solar and interplanetary plasma parameters with geomagnetic storms?, J. Geophys. Res., 1973, vol. 110, A02213. https://doi.org/10.1029/2004JA010799

    Article  Google Scholar 

  37. Kelley, M.C., Fejer, B.G., and Gonzales, C.A., An explanation for anomalous ionospheric electric fields associated with a northward turning of the interplanetary magnetic field, Geophys. Res. Lett., 1979, vol. 6, no. 4, pp. 301–304. https://doi.org/10.1029/GL006i004p00301

    Article  Google Scholar 

  38. Kumar, S., Chandra, H., and Sharma, S., The equatorial anomaly crest in the Indian region, J. Atmos. Sol. Terr. Phys., 2005, vol. 67, pp. 581–594.

    Article  Google Scholar 

  39. Laštovička, J., Effects of geomagnetic storms in the lower ionosphere, middle atmosphere and troposphere, J. Atmos. Sol. Terr. Phys., 2005, vol. 66, no. 12, pp. 831–843.

    Google Scholar 

  40. Lee Chien-Chih, Examination of the absence of noontime bite-out in equatorial total electron content, J. Geophys. Res., 2012, vol. 117, A09303. https://doi.org/10.1029/2012JA017909

    Article  Google Scholar 

  41. Liu, L., Wan, W., Zhang, M.-L., Zhao, B., and Ning, B., Pre-storm enhancements in NmF2 and total electron content at low latitudes, J. Geophys. Res., 2008, vol. 113, A02311. https://doi.org/10.1029/2007JA012832

    Article  Google Scholar 

  42. Low, N.C. and Roelofs, T.H., On the large scale vertical movements of the F-layer and its effects on the total electron content over low latitude during the magnetic storm of 25 May 1967, Planet. Space Sci., 1973, vol. 21, no. 10, pp. 1805–1808.

    Article  Google Scholar 

  43. Manju, G., Kumar Pant, T., Ravindran, S., and Sridharan, R., On the response of the equatorial and low latitude ionospheric regions in the Indian sector to the large magnetic disturbance of 29 October 2003. Ann. Geophys., 2009, vol. 27, pp. 2539–2544.

    Article  Google Scholar 

  44. Mansilla, G.A., Mid-latitude Ionospheric effect of a great geomagnetic storm, J. Atmos. Sol. Terr. Phys., 2004, vol. 66, no. 12, pp. 1085–1091.

    Article  Google Scholar 

  45. Martyn, D.F., Ion drag with electrodynamics drift, Proc. R. Soc. A, 1947, vol. 189, pp. 241–260.

    Google Scholar 

  46. Mayr, H.G. and Volland, H., Magnetic storm effects in the neutral composition, Planet. Space Sci., 1972, vol. 20, pp. 379–393. https://doi.org/10.1016/0032-0633(72)90036-0

    Article  Google Scholar 

  47. Mikhailov, A.V. and Perrone, L., Pre-storm NmF2 enhancements at middle latitudes: delusion or reality?, Ann. Geophys., 2009, vol. 27, pp. 1321–1330.

    Article  Google Scholar 

  48. Olawepo, A. O., Response of ionospheric N(h) profiles over Ilorin to moderate geomagnetic storms, Ife J. Sci., 2013, vol. 15, no. 3, pp. 509–521.

    Google Scholar 

  49. Olawepo, O.A., and Adeniyi, J.O., Ionosphere’s F2-layer response to 2006 geomagnetic storm at Ilorin, Nigeria, Afr. Rev. Phys., 2012, vol. 7, no. 0031, pp. 277–281.

    Google Scholar 

  50. Radicella, S.M. and Adeniyi, J.O., Equatorial ionospheric electron density below the F2 peak, Radio Sci., 1999, vol. 34, no. 5, pp. 1153–1163.

    Article  Google Scholar 

  51. Rajaram, G. and Rastogi, R.G., Equatorial electron densities—seasonal and solar cycle changes, J. Atmos. Terr. Phys., 1977, vol. 39, pp. 1175–1182. https://doi.org/10.1016/0021-9169(77)90026-5

  52. Rastogi, R.G., Chandra, H., Sharma, R.P., and Girija, R., Ground-based measurements of ionospheric phenomena associated with equatorial electrojet, Indian J. Radio Space, 1972, vol. 1, no. 2, pp. 119–135.

    Google Scholar 

  53. Reeves, W.D., Geomagnetism tutorial, 61.63° N:262.89° E Reeve Observatory, Anchorage, Alaska, 2010, Issue 1.0. http://www.reeve.com/Documents/SAM/GeomagnetismTutorial.pdf. Accessed April, 2011.

  54. Saranya, P.L., Venkatesh, K., Prasad, D.S.V.V.D., Rama Rao, P.V.S., and Niranjan, K., Pre-23 storm behaviour of NmF2 and TEC (GPS) over equatorial and low latitude stations in the Indian sector, Adv. Space Res., 2011, vol. 48, no. 2, pp. 207–217. https://doi.org/10.1016/j.asr.2011.03.028

    Article  Google Scholar 

  55. Sastri, H., Equatorial electric field of ionospheric disturbance dynamo origin, Ann. Geophys., 1988, vol. 6, pp. 635–642.

    Google Scholar 

  56. Sastri, J.H., Effect of geomagnetic storms and sub storms on the low-latitude/equatorial ionosphere, in ILWS Workshop 2006 on the Solar Influence on the Heliosphere and Earth’s Environment, Gopalswamy, N. and Bhattacharya, A., Eds., Goa, India, 2006, pp. 361–368.

  57. Sastri, J.H., Jyoti, N., Somayajulu, V.V., Chandra, H., and Devasia, C.V., Ionospheric storm of 30 early November 1993 in the Indian equatorial region, J. Geophys. Res., 2000, vol. 105, no. A8, pp. 18443–18445.https://doi.org/10.1029/1999JA000372

  58. Scherliess, L. and Fejer, B.G., Storm time dependence of equatorial dynamo zonal electric fields, J. Geophys. Res., 1997, vol. 102, pp. 24037–24046.

    Article  Google Scholar 

  59. Senior, C. and Blanc, M., On the control of the magnetospheric convection by the spatial distribution of ionospheric conductivities, J. Geophys. Res., 1984, vol. 89, pp. 261–284. https://doi.org/10.1029/JA089iA01p00261

    Article  Google Scholar 

  60. Sheng, C., Lu, G., Solomon, S.C., Wang, W., Doornbos, E., Hunt, L.A., and Mlynczak, M.G., Thermospheric recovery during the 5 April 2010 geomagnetic storm, J. Geophys. Res.: Space Phys., 2017, vol. 122. https://doi.org/10.1002/2016JA023520

  61. Shimeis, A., Fathy, I., Amory-Mazaudier, C., Fleury, R., Mahrous, A. M., Yumoto, K., and Groves, K., Signature of the coronal hole near the north crest equatorial anomaly over Egypt during the strong geomagnetic storm 5 April 2010, J. Geophys. Res., 2012, vol. 117, A07309. https://doi.org/10.1029/2012JA017753

    Article  Google Scholar 

  62. Shweta, M., Shivalika, S., Purohit, P.K., and Gwal, A.K., Effect of geomagnetic storms in the equatorial anomaly region observed from ground based data, Int. J. Geomatics Geosci., 2010, vol. 1, no. 3, pp. 477–488.

    Google Scholar 

  63. Skinner, N.J. and Wright, R.W., Some geomagnetic effects in the equatorial F2-region, J. Atmos. Terr. Phys., 1955, vol. 6, no. 177, pp. 965–974.

    Article  Google Scholar 

  64. Smirnov, S., Reaction of electric and meteorological states of the near-ground atmosphere during a geomagnetic storm on 5 April 2010, Earth Planets Space, 2014, vol. 66, id 154. https://doi.org/10.1186/s40623-014-0154-2

  65. Sur Dibyendu, Sarbani Ray, and Ashik Paul, Observations of storm-time thermospheric O/N2 ratio and TEC in the Northern Hemisphere during intense geomagnetic storms of 2015–2017, URSI AP-RASC 2019.

    Google Scholar 

  66. Taylor, J.R., Lester, M., and, Yeoman, T.K., A superposed epoch analysis of geomagnetic storms, Ann. Geophys., 1994, vol. 12, pp. 612–624.

    Article  Google Scholar 

  67. Titheridge, J.E. and Buonsanto, M.J., A comparison of northern and southern hemisphere TEC storm 25 behavior, J. Atmos. Terr. Phys., 1988, vol. 50, pp. 763–780.

    Article  Google Scholar 

  68. Tsurutani, B.T. and Gonzalez, W.D., The interplanetary cause of magnetic storms: A review, in Magnetic Storms, Tsurutani, B.T., Gonzalez, W.D., Kamide, Y., and Arballo, J.K., Washington, D.C.: Am. Geophys. Union, 1997, vol. 98, pp. 77–89.

  69. Tsurutani, B.T., Sigiura, M., Iyemori, T., Goldstein, B.E., Gonzalez, W.D., Akasofu, S.I., and Smith, E.J., The nonlinear response of AE to IMF Bz driver: a spectral break at 5 hours, Geophys. Res. Lett., 1990, vol. 17, no. 3, pp. 279–282.

    Article  Google Scholar 

  70. Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Tang, F., Arballo, J.K., and Okada, M., Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle, J. Geophys. Res., 1995, vol. 100, pp. 21717–21733.

    Article  Google Scholar 

  71. Tsurutani, B.T., Ho, C.M., Arballo, J.K., Smith, E.J., Goldstein, B.E., Neugebauer, M., Balogh, A., Feldman, W.C., Interplanetary discontinuities and Alfvén waves at high heliographic latitudes: Ulysses, J. Geophys. Res., 1996, vol. 101, no. A5, pp. 11027–11038. https://doi.org/10.1029/95JA03479

    Article  Google Scholar 

  72. Turunen, T. and Rao, M., Examples of the influence of strong magnetic storms on the equatorial F-layer, J. Atmos. Terr. Phys., 1980, vol. 42, pp. 323–330.

    Article  Google Scholar 

  73. Valladares, C.E., Eccles, J.V., Basu, Su., Schunk, R.W., Sheehan, R., Pradipta, R., and Ruohoniemi, J.M., The magnetic storms of 3–4 August 2010 and 5–6 August 2011: 1. Ground- and space-based observations, J. Geophys. Res.: Space Phys., 2017, vol. 122, no. 3, pp. 3487–3499. https://doi.org/10.1002/2016JA023359

    Article  Google Scholar 

  74. Webb, D.F. and Howard, R.A., The solar cycle variation of coronal mass ejections and the solar wind mass flux, J. Geophys. Res., 1994, vol. 99, pp. 4201–4220.

    Article  Google Scholar 

  75. Woodman, R.F., Vertical drift velocities and east–west electric fields at the magnetic equator, J. Geophys. Res., 1970, vol. 75, no. 31, pp. 6249–6259.

    Article  Google Scholar 

  76. Yizengaw, E., Dyson, P.L., Essex, E.A., and Moldwin, M.B., Ionosphere dynamics over the Southern Hemisphere during the 31 March 2001 severe magnetic storm using multi-instrument measurement data, Ann. Geophys., 2005, vol. 23, pp. 707–721. https://doi.org/10.5194/angeo-23-707-2005

    Article  Google Scholar 

  77. Zhang, Y., Paxton, I.J., Morrison, D., Wolven, B., Kil, H., Meng, C.I., Mende, S.B., and Immel, T.J., O/N2 changes during 1–4 October 2002 storms: IMAGE SI_13 and TIMED/GUVI observations, J. Geophys. Res., 2004, vol. 109, A10308. https://doi.org/10.1029/2004JA010441

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the organizing committee of the first Varsity symposium 2016, for the invitation and financial support to attend the conference, where this work was first presented as a poster.

We also appreciate the management and administration of all the observatories that made available the data used in this study.

The authors also wish to acknowledge the support and contributions of Dr. Huixin Liu of the Department of Earth and Planetary Science, Kyushu University, Japan.

The contribution and efforts of the anonymous reviewers of this paper and the editor of this journal is quite appreciated and commendable.

Funding

This study was not funded by any organization or agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. W. Joshua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshua, B.W., Adeniyi, J.O., Olawepo, A.O. et al. Latitudinal Dependence of Ionospheric Responses to Some Geomagnetic Storms during Low Solar Activity. Geomagn. Aeron. 61, 418–437 (2021). https://doi.org/10.1134/S0016793221030063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793221030063

Keywords:

Navigation