Skip to main content
Log in

Solar-Activity Cycles Reconstructed from Statistics on Polar Lights with Allowance for the Contribution of the Main Magnetic Field of the Earth in 1000–2000

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

We examined cycles of solar activity reconstructed based on the number of auroras observed at the middle and low latitudes in 1000–1700. We used a wavelet analysis method. Variations in the Earth’s magnetic moment influence the propagation of cosmic particles that cause auroras. We took this influence into account when reconstructing solar activity based on variations in the number of auroras. The analysis was carried out for a combined series: the reconstructed series of sunspots SN (1000–1700) and the modern SN series (1700–2000). Two dominant components were found in the SN spectrum: the near-centennial Gleissberg cycle, which consists of two modes with periods of 60–80 and 90–140 years, and a nearly two-century Suess cycle. When the the contribution of the magnetic moment is taken into account, the amplitudes of the periods of the Gleissberg group in the SN spectrum increase as compared to the initial spectrum of the aurora number, and their intensity approaches the intensity of the Suess variation. Analysis of changes in the amplitudes and periods of all cycles showed the presence of long-wave modulation with a possible period ranging from 1300 to 1700 years. As for the Gleissberg cycles, a frequency modulation with a period of 216 years by the Suess cycle was also revealed. We believe that the ~200-year component has an extrasolar nature and may reflect the result of the duplication of the fundamental frequency (11 and 22-year cycles) on multiple modulator modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Attolini, M.R., Cecchini, S., Galli, M., and Nanni, T., On the persistence of the 22-year solar cycle, Sol. Phys., 1990, vol. 125, pp. 389–398.

    Article  Google Scholar 

  2. Babcock, H.W., The topology of the Sun’s magnetic field and the 22-year cycle, Astrophys. J., 1961, vol. 133, pp. 527–587.

    Article  Google Scholar 

  3. Brown, M.C., Donadini, F., Korte, M., Nilsson, A., Korhonen, K., Lodge, A., Lengyel, S.N., and Constable, C.G., Geomagia50.v3:1. General structure and modifications to the archeological and volcanic database, Earth Planets Space, 2015, vol. 67, pp. 11–31.

    Article  Google Scholar 

  4. Chol-jun K. and Jik-su K., About 200-year cycle of solar activity in the mediaeval Korean records and reconstructions from cosmogenic radionuclides. https://arxiv.org/ pdf/1912.11226.pdf. 2019.

  5. Clilverd, M.A., Clarke, E., Ulich, T., Rishbeth, H., and Martin, J., Predicting solar cycle 24 and beyond, Space Weather, 2006, vol. 4, no. 9, S09005. https://doi.org/10.1029/2005SW00027

  6. Constable, C. and Korte, M., Centennial-to-millennial-scale geomagnetic field variations, in Treatise on Geophysics, Schubert, G., Ed., Oxford: Elsevier, 2015, pp. 309–341. https://doi.org/10.1016/B978-0-444-53802-4.00103-2

    Book  Google Scholar 

  7. Daubechies, I., Ten Lectures on Wavelets, Philadelphia, Pa.: Society for Industrial and Applied Mathematics, 1992. https://doi.org/10.1137/1.9781611970104.

  8. Dergachev, V.A. and Raspopov, O.M., The long-term solar cyclicity (210 and 90 years) and variation of the global terrestrial air temperatures since 1868, in Proc. of the 1st Solar and Space Weather Euroconference, Santa Cruz de Tenerife, Spain, 25–29 September 2000, Wilson, A., Ed., Noordwijk, Netherlands: ESA, 2000, vol. 463, pp. 485–491.

    Google Scholar 

  9. de Vries, H., Variation in concentration of radiocarbon with time and location on Earth, Proc. K. Ned. Akad. Wet., Ser. B: Phys. Sci., 1958, vol. 61, pp. 94–102.

    Google Scholar 

  10. Donadini, F., Korte, M., and Constable, C., Geomagnetic field for 0-3ka: 1. New data sets for global modeling, Geochem. Geophys. Geosyst., 2009, vol. 10, Q06007. https://doi.org/10.1029/2008GC002295

    Article  Google Scholar 

  11. Eddy, J.A., The historical record of solar activity, in Proc. Conf. “The Ancient Sun: Fossil Record in the Earth, Moon and Meteorites,” Boulder, Col., Oct. 16–19, 1979, New York: Pergamon, 1980, pp. 119–134.

  12. Feynman, J. and Fougere, P.F., Eighty-eight year periodicity in solar–terrestrial phenomena confirmed, J. Geophys. Res., 1984, vol. 89, pp. 3023–3027.

    Article  Google Scholar 

  13. Feynman, J. and Ruzmaikin, A., The centennial Gleissberg cycle and its association with extended minima, J. Geophys Res.: Space Phys., 2014, vol. 119, no. 8, pp. 6027–6041.

    Article  Google Scholar 

  14. Gleissberg, W., Evidence for a long solar cycle, The Observatory, 1944, vol. 65, no. 282, pp. 123–125.

    Google Scholar 

  15. Grossman, A. and Morlet, J., Decomposition of hardy functions into square integrable wavelets of constant shape, SIAM J. Math., 1984, vol. 15, no. 4, pp. 723–736. https://doi.org/10.1137/0515056.m

    Article  Google Scholar 

  16. Hale, G.E. and Nicholsonn, S.B., The law of sun-spot polarity, Astrophys. J., 1925, vol. 62, pp. 270–300.

    Article  Google Scholar 

  17. Hathaway, D.H., The solar cycle, Living Rev. Sol. Phys., 2015, vol. 12, id 4. http://www.livingreviews.org/lrsp-2015-4. https://arxiv.org/pdf/1502.07020.

  18. Hulot, G., Finlay, C.C., Constable, C.G., Olsen, N., and Mandea, M., The magnetic field of planet Earth, Space Sci. Rev., 2010, vol. 152, pp. 159–222. https://doi.org/10.1007/s11214-010-9644-0

    Article  Google Scholar 

  19. Javaraiah, J., Will solar cycles 25 and 26 be weaker than cycle 24?, Sol. Phys., 2017, vol. 292, no. 11, pp. 172–188. https://doi.org/10.1007/s11207-017-1197-x

    Article  Google Scholar 

  20. Keimatsu, M., A chronology of aurorae and sunspots observed in China, Korea and Japan, Ann. Sci., 1976, vol. 13, pp. 1–32.

    Google Scholar 

  21. Kern, A.K., Harzhauser, M., Piller, W.E., Mandic, O., and Soliman, A., Strong evidence for the influence of solar cycles on a Late Miocene lake system revealed by biotic and abiotic proxies, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2012, vol. 329, pp. 124–136. https://arxiv.org/pdf/1912.11226.pdf.

    Article  Google Scholar 

  22. Kolláth, Z. and Oláh, K., Multiple and changing cycles of active stars I. Methods of analysis and application to the solar cycles, Astron. Astrophys. Manuscript, no. 11303. https://arxiv.org/pdf/0904.1725. https://doi.org/10.1051/0004-6361/200811304

  23. Komitov, B. and Kaftan, V., The sunspot cycle no. 24 in relation to long term solar activity variation, J. Adv. Res., 2013, vol. 4, no. 3, pp. 279–282. https://doi.org/10.1016/j.jare.2013.02.001

    Article  Google Scholar 

  24. Komitov, B., Sello, S., Duchlev, P., Dechev, M., Penev, K., and Koleva, K., The sub- and quasi-centurial in solar and geomagnetic activity data series, Bulg. Astron. J., 2016, vol. 25, pp. 78–103.

    Google Scholar 

  25. Korte, M., Reconstructing the global geomagnetic field of the Holocene, Latinmag Lett., 2011, vol. 1, no. 2, pp. 1–6.

    Google Scholar 

  26. Kuklin, G.V., Cyclical and secular variations of solar activity, in Basic Mechanisms of Solar Activity, Bumba, V. and Kleczek, J., Eds., Boston, Mass.: D. Reidel, 1976, pp. 147–190.

    Google Scholar 

  27. Lin, Y.C., Fan, C.Y., Damon, P.E., and Wallick, E.I., Long term modulation of cosmic ray intensity and solar activity cycles, in Proc. of the 14th Int. Cosmic Ray Conference, Garching, Germany, Max Planck Inst. für extraterrestrische Physik, 1975, vol. 3, pp. 995–999.

  28. Liritzis, Y. and Petropoulos, B., Latitude dependence of auroral frequency in relation to solar–terrestrial and interplanetary parameters, Earth Moon Planets, 1987, vol. 39, no. 1, pp. 75–91.

    Article  Google Scholar 

  29. Ma, L.H. and Vaquero, J.M., Is the Suess cycle present in historical naked-eye observations of sunspots?, New Astron., 2009, vol. 14, pp. 307–310.

    Article  Google Scholar 

  30. McCracken, K.G., Beer, J., Steinhilber, F., and Abreu, J., A phenomenological study of the cosmic ray variations over the past 9400 years, and their implications regarding solar activity and the solar dynamo, Sol. Phys., 2013, vol. 286, no. 2, pp. 609–627.

    Article  Google Scholar 

  31. Nachasova, I.E. and Akimova, S.V., The geomagnetic field intensity variations in the Iberian Peninsula during the last millennium, Izv., Phys. Solid Earth, 2015, vol. 51, no. 5, pp. 709–715.

    Article  Google Scholar 

  32. Nagovitsyn, Yu.A., Solar activity during the last two millennia: “Solar Patrol” in ancient and medieval China, Geomagn. Aeron. (Engl. Transl.), 2001, vol. 41, no. 5, pp. 680–688.

  33. Nagovitsyn, Yu.A., Global solar activity on long time scales, Astrophys. Bull., 2008, vol. 63, no. 1, pp. 43–55.

    Google Scholar 

  34. Nagovitsyn, Yu.A., Georgieva, K., Osipova, A.A., and Kuleshova, A.I., Eleven-year cyclicity of the Sun on the 2000-year time scale, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 8, pp. 1081–1088. https://doi.org/10.1134/S001679321508023X

  35. Ogurtsov, M.G., Nagovitsyn, Yu.A., Kocharov, G.E., and Jungner, H., Long-period cycles of the Sun’s activity recorded in direct solar data and proxies, Sol. Phys., 2002a, vol. 211, nos. 1–2, pp. 371–394.

    Article  Google Scholar 

  36. Ogurtsov, M.G., Kocharov, G.E., Lindholm, M., Nagovitsyn, Yu.A., et al., Evidence of solar variation in tree-ring-based climate reconstructions, Sol. Phys., 2002b, vol. 205, vol. 205, no. 2, pp. 403–417. https://doi.org/10.1023/A:1014277121166

  37. Peristykh, A.N. and Damon, P.E., Persistence of the Gleissberg 88 year cycle over the last ~12,000 years: Evidence from cosmogenic isotope, J. Geophys. Res.: Space Phys., 2003, vol. 108, no. A1, pp. SSH 1-1–SSH 1-15. https://doi.org/10.1029/2002JA009390

  38. Ptitsyna, N.G. and Demina, I.M., Reconstruction of the solar activity in 1000–1700 based on auroral data with allowance for the contribution of the main magnetic field of the Earth, 2020, vol. 60, no. 3, pp. 495–506.

  39. Ptitsyna, N.G., Tyasto, M.I., and Khrapov, B.A., Variations in the occurrence frequency of Aurora in 1837–1900 from data of the Russian network of meteorological observatories, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 5, pp. 679–687.

  40. Ptitsyna, N.G., Demina, I.M., and Tyasto, M.I., Variations in the auroral activity and main magnetic field of the Earth over 300 years (1600–1909), Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 6, pp. 784–792.

  41. Scargle, J.D., Wavelet and other multi-resolution methods for time series analysis, in Statistical Challenges in Modern Astronomy II, Babu, G.J.and Feigelson, E.D., Eds., New York: Springer, 1997, pp. 333–347.

    Google Scholar 

  42. Schove, D.J., Aurora numbers since 500 B.C, J. Br. Astron. Assoc., 1962, vol. 72, no. 1, pp. 31–35.

    Google Scholar 

  43. Siscoe, G.L., Evidence in the auroral record for secular solar variability, Rev. Geophys., 1980, vol. 1, no. 8, pp. 647–658.

    Article  Google Scholar 

  44. Sonett, C.P., Sunspot time series: Spectrum from square law modulation of the Hale cycle, Geophys. Res. Lett., 1982, vol. 9, pp. 1313–1316.

    Article  Google Scholar 

  45. Sonett, C.P. and Finney, S.A., The spectrum of radiocarbon, in The Earth’s Climate and Variability of the Sun over Recent Millennia: Geophysical, Astronomical and Archaeological Aspects, Pecker, J.-C. and Runcorn, S.K., Eds., London: Royal Society, 1990, pp. 15–27.

    Google Scholar 

  46. Steinhilber, F., Abreu, J.A., Beer, J., et al., 9400 year cosmogenic isotope data and solar activity reconstruction, in IGBP PAGES/WDC Paleoclimate Data Contr. Ser. # 2012-040, NOAA/NCDC, Boulder, Col.: Paleoclimate Program, 2012.

    Google Scholar 

  47. Suess, H.E., The radiocarbon record in tree rings of the last 8000 years, Radiocarbon, 1980, vol. 22, pp. 200–209.

    Article  Google Scholar 

  48. Svalgaard, L., Up to nine millennia of multimessenger solar activity, 2018. https://arxiv.org/ftp/arxiv/papers/1810/ 1810.11952.pdf.

  49. Usoskin, I.G., A history of solar activity over millennia, Living Rev. Sol. Phys., 2017, vol. 14, id 3. https://doi.org/10.1007/s41116-017-0006-9

  50. Usoskin, I.G. and Kovaltsov, G.A., Occurrence of extreme solar particle events: Assessment from historical proxy data, Astrophys. J., 2012, vol. 757, no. 1, id 92. https://arxiv.org/abs/1207.5932. https://doi.org/10.1088/0004-637X/757/1/92

  51. Vaquero, J.M., Gallego, M.C., and Garcia, J.A., A 250-year cycle in naked-eye observations of sunspot, Geophys Res. Lett., 2002, vol. 29, no. 20, pp. 199–204.

    Article  Google Scholar 

  52. Vasquez, M., Vaquero, J.M., and Gallego, M.C., Long-term spatial and temporal variations of aurora borealis events in the period 1700–1905, Sol. Phys., 2014, vol. 289, no. 5, pp. 1843–1861.

    Article  Google Scholar 

  53. Vecchio, A., Lepreti, F., Laurenza, M., Alberti, T., and Carbone, V., Connection between solar activity cycles and grand minima generation, Astron. Astrophys., 2017, vol. 599, pp. 292–304. https://doi.org/10.1051/0004-361/201629758

    Article  Google Scholar 

  54. Wilson, S.G., Digital Modulation and Coding, Charlottesville, Va.: Prentice-Hall, 1996.

    Google Scholar 

  55. Wu, C.J., Usoskin, I.G., Krivova, N., Kovaltsov, G.A., Baroni, M., Bard, E., and Solanki, S.K., Solar activity over nine millennia: A consistent multi-proxy reconstruction, Astron. Astrophys., 2018, vol. 615, pp. 1–13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. G. Ptitsyna or I. M. Demina.

Additional information

Translated by E. Morozov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ptitsyna, N.G., Demina, I.M. Solar-Activity Cycles Reconstructed from Statistics on Polar Lights with Allowance for the Contribution of the Main Magnetic Field of the Earth in 1000–2000. Geomagn. Aeron. 61, 312–324 (2021). https://doi.org/10.1134/S0016793221020122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793221020122

Navigation